cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078932 Number of compositions (ordered partitions) of n into powers of 3.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 9, 13, 20, 30, 44, 66, 99, 147, 219, 327, 487, 726, 1083, 1614, 2406, 3588, 5349, 7974, 11889, 17725, 26426, 39399, 58739, 87573, 130563, 194655, 290208, 432669, 645062, 961716, 1433814, 2137659, 3187014, 4751490, 7083951
Offset: 0

Views

Author

Paul D. Hanna, Dec 16 2002

Keywords

Examples

			A(x) = A(x^3) + x*A(x^3)^2 + x^2*A(x^3)^3 + x^3*A(x^3)^4 + ... = 1 +x + x^2 +2x^3 +3x^4 +4x^5 +6x^6 +9x^7 + 13x^8 +...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, add(a(n-3^i), i=0..ilog[3](n)))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 11 2014
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[a[n-3^i], {i, 0, Log[3, n]}]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 23 2015, after Alois P. Heinz *)
  • PARI
    a(n)=local(A,m); if(n<1,n==0,m=1; A=1+O(x); while(m<=n,m*=3; A=1/(1/subst(A,x,x^3)-x)); polcoeff(A,n))
    
  • PARI
    N=66; x='x+O('x^N);
    Vec( 1/( 1 - sum(k=0, ceil(log(N)/log(3)), x^(3^k)) ) )
    /* Joerg Arndt, Oct 21 2012 */

Formula

G.f.: 1/( 1 - sum(k>=0, x^(3^k) ) ). [Joerg Arndt, Oct 21 2012]
G.f. satisfies A(x) = A(x^3)/(1 - x*A(x^3)), A(0) = 1.
Sum(k>=0, a(2k+1)*x^k) / sum(k>=0, a(2k)*x^k) = sum(k>=0, x^((3^n-1)/2)) = (1 +2x +4x^2 +9x^3 +20x^4 +...)/(1 +x +3x^2 +6x^3 +13x^4 +...) = (1 +x +x^4 +x^13 +x^40 +x^121 +...).
a(n) ~ c * d^n, where d=1.4908903146089481048158292585129929112464706408636716058683929302099..., c=0.5482795768884593030933437319550701222657139895191578491936872735719... - Vaclav Kotesovec, May 01 2014

Extensions

New description from T. D. Noe, Jan 29 2007