A078972 Brilliant numbers: semiprimes (products of two primes, A001358) whose prime factors have the same number of decimal digits.
4, 6, 9, 10, 14, 15, 21, 25, 35, 49, 121, 143, 169, 187, 209, 221, 247, 253, 289, 299, 319, 323, 341, 361, 377, 391, 403, 407, 437, 451, 473, 481, 493, 517, 527, 529, 533, 551, 559, 583, 589, 611, 629, 649, 667, 671, 689, 697, 703, 713, 731, 737, 767, 779, 781
Offset: 1
Examples
1711 = 29*59 is in the sequence since both of its factors have two digits.
References
- P. D. James, The Private Patient, Knopf, NY, 2008, p. 192. (from N. J. A. Sloane, Aug 27 2009)
Links
- T. D. Noe, Table of n, a(n) for n = 1..10537
- Dario Alpern, Brilliant Numbers.
- Christian N. K. Anderson, Ulam Spiral of n=1..3000.
Crossrefs
Programs
-
Haskell
import Data.Function (on) a078972 n = a078972_list !! (n-1) a078972_list = filter brilliant a001358_list where brilliant x = (on (==) a055642) p (x `div` p) where p = a020639 x -- Reinhard Zumkeller, Nov 10 2013, Mar 22 2014
-
Mathematica
fQ[n_] := Block[{fi = FactorInteger@n}, Plus @@ Last /@ fi == 2 && Floor[ Log[10, fi[[1, 1]] ]] == Floor[ Log[10, fi[[ -1, 1]] ]]]; Select[ Range@792, fQ@# &] (* Robert G. Wilson v, May 26 2006 *) Select[Range[800],PrimeOmega[#]==2&&Length[Union[IntegerLength[FactorInteger[#][[;;,1]]]]]==1&] (* Harvey P. Dale, Jan 24 2025 *) Select[Range@1000, Differences@IntegerLength@Flatten@(ConstantArray@@#&/@FactorInteger[#]) == {0} &] (* Hans Rudolf Widmer, Oct 25 2022 *) dlist2[d_] := Union[Times @@@ Tuples[Prime[Range[PrimePi[10^(d-1)] + 1, PrimePi[10^d]]], 2]]; (* Generates terms with d-digits prime factors *) Flatten[Array[dlist2, 2]] (* Paolo Xausa, Oct 05 2024 *)
-
PARI
is(n)=my(f=factor(n));(#f[,1]==1 && f[1,2]==2) || (#f[,1]==2 && f[1,2]==1 && f[2,2]==1 && #Str(f[1,1])==#Str(f[2,1])) \\ Charles R Greathouse IV, Jun 16 2011
-
Python
from sympy import sieve A078972 = [] for n in range(3): pr = list(sieve.primerange(10**n,10**(n+1))) for i,p in enumerate(pr): for q in pr[i:]: A078972.append(p*q) A078972 = sorted(A078972) # Chai Wah Wu, Aug 26 2014
Formula
Extensions
Edited by N. J. A. Sloane, Aug 27 2009
Comments