cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 88 results. Next

A113940 Triangular numbers that are also brilliant (A078972).

Original entry on oeis.org

6, 10, 15, 21, 253, 703, 1081, 1711, 1891, 2701, 3403, 25651, 34453, 38503, 49141, 60031, 64261, 73153, 79003, 88831, 104653, 108811, 114481, 126253, 146611, 158203, 171991, 188191, 218791, 226801, 258121, 269011, 286903, 351541, 371953, 385003, 392941
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Comments

Smallest value where each factor has n digits for n = 1, 2, 3, 4, 5, are: 6 = 2 * 3; 253 = 11 * 23; 25651 = 113 * 227; 2035153 = 1009 * 2017; 202457503 = 10061 * 20123. [From Jonathan Vos Post, Apr 04 2009]

Examples

			253 = T(22) and 253 = 11*23 is brilliant.
		

Crossrefs

Programs

  • Mathematica
    brilQ[n_]:=Module[{fin=FactorInteger[n]},Total[Transpose[fin][[2]]]==2&& Length[Union[IntegerLength[Transpose[fin][[1]]]]]==1]
    Intersection[Accumulate[Range[850]],Select[Range[362000],brilQ]]  (* Harvey P. Dale, Feb 06 2011 *)

Formula

A000217 INTERSECTION A078972. Subset of A068443. [From Jonathan Vos Post, Apr 04 2009]

A115652 Brilliant numbers (A078972) which are the sum of distinct double factorials (A006882).

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 25, 49, 121, 169, 403, 407, 437, 451, 493, 517, 551, 949, 961, 1003, 1007, 1067, 1073, 1079, 1121, 1333, 1343, 1349, 1357, 1387, 1403, 1457, 1501, 3869, 3901, 3953, 4331, 4891, 5183, 5293, 10403, 10807, 11413, 11449
Offset: 1

Views

Author

Giovanni Resta, Jan 28 2006

Keywords

Comments

Double factorials 0!! and 1!! are not considered distinct. Note that double factorial (n!!) is different from (n!)!.

Examples

			949 = 13*73 = 9!! + 3!! + 1!!.
		

Crossrefs

A115669 Numbers the reversal of whose square is a brilliant number (A078972).

Original entry on oeis.org

2, 3, 11, 13, 20, 30, 31, 59, 61, 101, 110, 112, 113, 128, 130, 131, 178, 200, 300, 301, 307, 310, 311, 388, 590, 599, 610, 839, 854, 875, 949, 989, 1003, 1010, 1021, 1031, 1100, 1102, 1103, 1105, 1112, 1120, 1124, 1130, 1175, 1201, 1216, 1280, 1300
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			3481=59^2 is a square and 1843=19*97 is brilliant.
		

Crossrefs

Programs

  • Mathematica
    sbnQ[n_]:=Module[{fi=FactorInteger[IntegerReverse[n^2]]},(Length[fi]==1 && fi[[1,2]]==2)||(Length[fi]==2&&fi[[All,2]]=={1,1})&&Length[Union[ IntegerLength[ fi[[All,1]]]]]==1]; Select[Range[1300],sbnQ] (* Harvey P. Dale, Mar 23 2018 *)

A115916 Numbers k such that sigma(k) + phi(k) is a brilliant number (A078972).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 128, 144, 400, 576, 1296, 8100, 11664, 13225, 15129, 34969, 40000, 44944, 55112, 60025, 63368, 67712, 69938, 91809, 103058, 135424, 157922, 203401, 861184, 1034289, 1258884, 1270418, 1435204, 1440000, 1575025
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			sigma(55112) + phi(55112) = 131819 = 193*683.
		

Crossrefs

A239585 Prime factor <= other prime factor of n-th brilliant number, cf. A078972.

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 3, 5, 5, 7, 11, 11, 13, 11, 11, 13, 13, 11, 17, 13, 11, 17, 11, 19, 13, 17, 13, 11, 19, 11, 11, 13, 17, 11, 17, 23, 13, 19, 13, 11, 19, 13, 17, 11, 23, 11, 13, 17, 19, 23, 17, 11, 13, 19, 11, 13, 17, 11, 19, 29, 23, 11, 13, 19, 29, 17, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 22 2014

Keywords

Comments

a(n) = A020639(A078972(n)) = A078972(n) / A239586(n).
A055642(a(n)) = A055642(A239586(n)).

Examples

			      n  | A239585(n) | A239586(n) | A078972(n)   Lengths of factors
  -------+------------+------------+-----------   ------------------
      1  |        2   |        2   |        4          1
      5  |        2   |        7   |       14
     10  |        7   |        7   |       49
         |.........................|              ..................
     11  |       11   |       11   |      121          2
     78  |       11   |       97   |     1067
    100  |       37   |       37   |     1369
    241  |       97   |       97   |     9409
         |.........................|              ..................
    242  |      101   |      101   |    10201          3
   1000  |      193   |      263   |    50759
   2530  |      101   |      997   |   100697
  10000  |      743   |      937   |   696191
  10537  |      997   |      997   |   994009
         |.........................|              ..................
  10538  |     1009   |     1009   |  1018081          4
		

Crossrefs

Subsequence of A084126.

Programs

  • Haskell
    a239585 = a020639 . a078972
  • Mathematica
    Table[With[{f = FactorInteger[k]}, If[Total[f[[All, 2]]] == 2 && Length[Union[IntegerLength[f[[All, 1]]]]] == 1, f[[1, 1]], Nothing]], {k, 1000}] (* Paolo Xausa, Oct 02 2024 *)
    dlist2[d_] := Union[Times @@@ Tuples[Prime[Range[PrimePi[10^(d-1)] + 1, PrimePi[10^d]]], 2]]; (* Generates terms with d-digits prime factors -- faster but memory intensive *)
    Map[FactorInteger[#][[1, 1]]&, Flatten[Array[dlist2, 2]]] (* Paolo Xausa, Oct 09 2024 *)

A239586 Prime factor >= other prime factor of n-th brilliant number, cf. A078972.

Original entry on oeis.org

2, 3, 3, 5, 7, 5, 7, 5, 7, 7, 11, 13, 13, 17, 19, 17, 19, 23, 17, 23, 29, 19, 31, 19, 29, 23, 31, 37, 23, 41, 43, 37, 29, 47, 31, 23, 41, 29, 43, 53, 31, 47, 37, 59, 29, 61, 53, 41, 37, 31, 43, 67, 59, 41, 71, 61, 47, 73, 43, 29, 37, 79, 67, 47, 31, 53, 83
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 22 2014

Keywords

Comments

a(n) = A006530(A078972(n)) = A078972(n) / A239585(n).
A055642(a(n)) = A055642(A239585(n)).

Examples

			See A239585.
		

Crossrefs

Subsequence of A084127.

Programs

  • Haskell
    a239586 n = a078972 n `div` a239585 n
  • Mathematica
    Table[With[{f = FactorInteger[k]}, If[Total[f[[All, 2]]] == 2 && Length[Union[IntegerLength[f[[All, 1]]]]] == 1, f[[-1, 1]], Nothing]], {k, 1000}] (* Paolo Xausa, Oct 02 2024 *)
    dlist2[d_] := Union[Times @@@ Tuples[Prime[Range[PrimePi[10^(d-1)] + 1, PrimePi[10^d]]], 2]]; (* Generates terms with d-digits prime factors -- faster but memory intensive *)
    Map[FactorInteger[#][[-1,1]]&,Flatten[Array[dlist2,2]]] (* Paolo Xausa, Oct 08 2024 *)

A083289 Least k such that 10^n+k is a brilliant number (cf. A078972).

Original entry on oeis.org

3, 0, 21, 3, 201, 13, 18081, 43, 140049, 81, 600009, 147, 6000009, 73, 380000361, 3, 1400000049, 831, 14000000049, 49, 380000000361, 987, 600000000009, 691, 78000000001521, 183, 740000000001369, 4153, 6200000000000961, 279
Offset: 0

Views

Author

Jason Earls, Jun 03 2003

Keywords

Comments

If n is an even positive exponent, then a(n) is the first prime greater than 10^(n/2) squared less 10^n.

Crossrefs

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; LengthBase10[n_] := Floor[ Log[10, n] + 1]; f[n_] := Block[{k = 0}, If[ EvenQ[n] && n > 1, NextPrim[ 10^(n/2)]^2 - 10^n, While[fi = FactorInteger[10^n + k]; Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ fi] != 2 || Length[ Union[ LengthBase10 /@ Flatten[ Table[ # [[1]], {1}] & /@ fi]]] != 1, k++ ]; k]]; Table[ f[n], {n, 0, 30}]
  • Python
    from sympy import nextprime, factorint
    def A083289(n):
        a, b = divmod(n,2)
        c, d = 10**n, 10**a
        if b == 0: return nextprime(d)**2-c
        k = 0
        while True:
            fs = factorint(c+k,multiple=True)
            if len(fs) == 2 and min(fs) >= d:
                return k
            k += 1 # Chai Wah Wu, Sep 28 2021

Extensions

Edited and extended by Robert G. Wilson v, Jun 27 2003

A113941 Pentagonal numbers (A000326) that are also brilliant numbers (A078972).

Original entry on oeis.org

35, 247, 1247, 2501, 4187, 15251, 17767, 33227, 49051, 63551, 68587, 71177, 76501, 81317, 96647, 112477, 118301, 128627, 147737, 159251, 182527, 241001, 250717, 265651, 302177, 318551, 438751, 485357, 563347, 655051, 1563151, 1600117
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Comments

This is to pentagonal numbers A000326 as A113940 is to triangular numbers A000217. These may be seen as the 5th and 3rd row of an infinite array of k-gonal numbers which are also brilliant numbers, where the 4th row is A001248 squares of primes. - Jonathan Vos Post, Apr 05 2009

Examples

			a(1) = 35 = 5th pentagonal number = 5*(3*5-1)/2 = 5 * 7, with the two prime factors each being one digit in length. a(2) = 247 = 13th pentagonal number = 13*(3*13-1)/2 = 13 * 19, with the two prime factors each being two digits in length. a(6) = 15251 = 101 * 151, with the two prime factors each being three digits in length. - _Jonathan Vos Post_, Apr 05 2009
17767 is the 109th pentagonal number and 17767=109*163 is brilliant.
		

Crossrefs

Formula

A000326 INTERSECTION A078972.

Extensions

Edited by N. J. A. Sloane, Apr 07 2009 at the suggestion of R. J. Mathar
Two more terms from R. J. Mathar, Apr 06 2009

A115644 Brilliant numbers (A078972) that are sums of distinct factorials.

Original entry on oeis.org

6, 9, 25, 121, 841, 871, 5041, 5767, 363721, 368761, 409111, 3633841, 3992431, 3992551, 4032121, 4037791, 39962281, 39962311, 39963031, 40279711, 40279801, 43585921, 43591687, 43909207, 479047801, 479365321, 479370271, 482631271
Offset: 1

Views

Author

Giovanni Resta, Jan 27 2006

Keywords

Examples

			39962281 = 11! + 8! + 7! + 5!+ 1! = 4861*8221.
		

Crossrefs

Programs

  • Mathematica
    brillQ[n_] := Block[{d = FactorInteger[n]}, Plus@@Last/@d==2 && (Last/@d=={2} || Length@IntegerDigits@((First/@d)[[1]])==Length@IntegerDigits@((First/@d)[[2]]))]; fac=Range[20]!;lst={}; Do[ n = Plus@@(fac*IntegerDigits[k, 2, 20]); If[brillQ[n], AppendTo[lst, n]], {k, 2^20-1}]; lst

A115667 Squares whose digit reversal is a brilliant number (A078972).

Original entry on oeis.org

4, 9, 121, 169, 400, 900, 961, 3481, 3721, 10201, 12100, 12544, 12769, 16384, 16900, 17161, 31684, 40000, 90000, 90601, 94249, 96100, 96721, 150544, 348100, 358801, 372100, 703921, 729316, 765625, 900601, 978121, 1006009, 1020100
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			3481=59^2 is a square and 1843=19*97 is brilliant.
		

Crossrefs

Showing 1-10 of 88 results. Next