cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079004 Least x>=3 such that F(x)==1 (mod 3^n) where F(x) denotes the x-th Fibonacci number (A000045).

Original entry on oeis.org

7, 10, 10, 34, 106, 322, 970, 2914, 8746, 26242, 78730, 236194, 708586, 2125762, 6377290, 19131874, 57395626, 172186882, 516560650, 1549681954, 4649045866, 13947137602, 41841412810, 125524238434, 376572715306, 1129718145922
Offset: 1

Views

Author

Benoit Cloitre, Feb 01 2003

Keywords

References

  • R. L. Graham, D. E. Knuth and O. Patashnick, "Concrete Mathematics", second edition, Addison Wesley, ex. 6.59.

Crossrefs

Programs

  • Maple
    7, 10, seq(4*3^(n-2)-2,n=3..50); # Robert Israel, Jan 15 2015
  • Mathematica
    a=2;lst={7,10};Do[a=a*3+4;AppendTo[lst,a],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 25 2008 *)
    LinearRecurrence[{4,-3},{7,10,10,34},40] (* Harvey P. Dale, Aug 16 2024 *)
  • PARI
    a(n)=if(n<0,0,x=3; while((fibonacci(x)-1)%(3^n)>0,x++); x)

Formula

a(1)=7, a(2)=10, a(3)=10; for n>3, a(n) = 3*a(n-1) + 4.
a(n) = 4*3^(n-2)-2 for n >= 3.
G.f.: 8*x^2+(23/3)*x+14/9+2/(x-1)-4/(9*(3*x-1)). - Robert Israel, Jan 15 2015

Extensions

Formula corrected by Robert Israel, Jan 15 2015