A079031 Least k > n such that p(n) divides p(k), where p(k) denotes the k-th partition number (A000041).
1, 2, 8, 7, 7, 10, 8, 9, 15, 97, 26, 75, 16, 356, 39, 96, 39, 39, 39, 264, 470, 776, 97, 711, 249, 765, 4458, 334, 699, 1084, 18911, 7150, 1447, 4604, 1399, 446, 36041, 5836, 3504, 1449, 4359, 6034, 688, 60818, 4514, 90825, 34641, 36852, 77173, 11100, 2564
Offset: 0
Keywords
Examples
a(19)=264: A000041(264) = 670448123060170 = 2*5*(7^2)*13*41*1907*1346143 = (13*41*1907*1346143)*(2*5*7^2) = 1368261475633*490 = 1368261475633*A000041(19).
Links
- Amiram Eldar, Table of n, a(n) for n = 0..72
Crossrefs
Cf. A000041.
Programs
-
Mathematica
Do[m = PartitionsP[n]; k = n + 1; While[Mod[PartitionsP[k], m] > 0, k++ ]; Print[k], {n, 0, 50}] (* Ryan Propper, Oct 31 2005 *)
-
PARI
a(n) = my(k=n+1, p=numbpart(n)); while (numbpart(k) % p, k++); k; \\ Michel Marcus, May 15 2020
Extensions
More terms from Reinhard Zumkeller, Aug 22 2003
Further terms from Ryan Propper, Oct 31 2005
a(0) inserted by Amiram Eldar, May 15 2020
Comments