cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A200324 a(n) = floor(10*(sqrt(prime(n+1)) - sqrt(prime(n)))).

Original entry on oeis.org

3, 5, 4, 6, 2, 5, 2, 4, 5, 1, 5, 3, 1, 2, 4, 4, 1, 3, 2, 1, 3, 2, 3, 4, 2, 0, 1, 0, 1, 6, 1, 2, 0, 4, 0, 2, 2, 1, 2, 2, 0, 3, 0, 1, 0, 4, 4, 1, 0, 1, 1, 0, 3, 1, 1, 1, 0, 1, 1, 0, 2, 4, 1, 0, 1, 3, 1, 2, 0, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 0, 2, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 18 2011

Keywords

Comments

If Andrica's conjecture is true, a(n) is at most 1 when n gets very large.

Examples

			a(9) = 5 because 10*(sqrt(29) - sqrt(23)) = 5.8933328382....
		

Crossrefs

Programs

  • Maple
    A200324:=n->floor(10*(sqrt(ithprime(n+1))-sqrt(ithprime(n)))): seq(A200324(n), n=1..200); # Wesley Ivan Hurt, Jan 19 2017
  • Mathematica
    Table[Floor[10*(Sqrt[Prime[n + 1]] - Sqrt[Prime[n]])], {n, 100}]
    Floor[10(Sqrt[Last[#]]-Sqrt[First[#]])]&/@Partition[Prime[Range[90]],2,1] (* Harvey P. Dale, Aug 24 2012 *)

Formula

a(n) = floor(10*(sqrt(A000040(n+1)) - sqrt(A000040(n)))).
Showing 1-1 of 1 results.