cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079122 Number of ways to partition 2*n into distinct positive integers not greater than n.

Original entry on oeis.org

1, 0, 0, 1, 1, 3, 5, 8, 13, 21, 31, 46, 67, 95, 134, 186, 253, 343, 461, 611, 806, 1055, 1369, 1768, 2270, 2896, 3678, 4649, 5847, 7325, 9141, 11359, 14069, 17367, 21363, 26202, 32042, 39068, 47512, 57632, 69728, 84167, 101365, 121801, 146053, 174777
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 27 2002

Keywords

Examples

			a(4)=1 [1+3+4=2*4]; a(5)=3 [1+2+3+4=1+4+5=2+3+5=2*5].
		

Crossrefs

Programs

  • Haskell
    a079122 n = p [1..n] (2 * n) where
       p _  0     = 1
       p [] _     = 0
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Mar 16 2012
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) + `if`(i>n, 0, b(n-i, i-1))))
        end:
    a:= n-> b(2*n, n):
    seq(a(n), n=0..80);  # Alois P. Heinz, Jan 18 2013
  • Mathematica
    d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@ #] == 1 &]; Table[d[n], {n, 1, 12}]
    TableForm[%]
    f[n_] := Length[Select[d[2 n], First[#] <= n &]]
    Table[f[n], {n, 1, 20}]  (* A079122 *)
    (* Clark Kimberling, Mar 13 2012 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i-1]]]]; a[n_] := b[2*n, n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Oct 22 2015, after Alois P. Heinz *)
    Table[SeriesCoefficient[Product[1 + x^(k/2), {k, 1, n}], {x, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Jan 16 2024 *)

Formula

a(n) = b(0, n), b(m, n) = 1 + sum(b(i, j): m
Coefficient of x^(2*n) in Product_{k=1..n} (1+x^k). - Vladeta Jovovic, Aug 07 2003
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(11/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 22 2015