cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A079146 Number of unlabeled semitransitive orders on n elements: (1+3)-free posets.

Original entry on oeis.org

1, 2, 5, 15, 49, 173, 639, 2469, 9997, 43109, 205092, 1153646, 8523086, 91156133, 1446766659, 32998508358, 1047766596136, 45632564217917, 2711308588849394, 219364550983697100, 24151476334929009951, 3618445112608409433287
Offset: 1

Views

Author

Detlef Pauly (dettodet(AT)yahoo.de), Dec 27 2002

Keywords

Crossrefs

Cf. A079145 (labeled semitransitive orders), A000112.

Programs

  • Mathematica
    nmax = 23; co = Coefficient; ex = Exponent;
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Flatten[Table[Function[ {p}, p + j x^i] /@ b[n - i j, i - 1], {j, 0, n/i}]]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j] co[s, x, i] co[t, x, j], {j, 1, ex[t, x]}], {i, 1, ex[s, x]}]/Product[i^co[s, x, i]*co[s, x, i]!, {i, 1, ex[s, x]}]/Product[i^co[t, x, i] co[t, x, i]!, {i, 1, ex[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    A[d_] := Sum[A[n, d - n], {n, 0, d}];
    B[x_] = Sum[A[n] x^n, {n, 0, nmax}];
    S[, ] = 0; Do[S[c_, t_] = Series[1 + (c/(1 + c)) S[c, t]^2 + t S[c, t]^3, {c, 0, nmax}, {t, 0, nmax}] // Normal, {nmax}];
    T[x_] = 1 - S[x/(1 - x), 1 - 2x - 1/B[x]];
    Rest[CoefficientList[-T[x] + O[x]^nmax, x]] (* Jean-François Alcover, Aug 11 2018, after Alois P. Heinz *)

Formula

G.f.: S(x/(1-x), T(x)), where S(x, y) is the g.f. for A221494 and T(x) is the g.f. for A221492. [Mathieu Guay-Paquet, Jan 18 2013]

Extensions

More terms from Mathieu Guay-Paquet, Jan 18 2013

A221493 Number of tangled bicolored graphs on n labeled vertices.

Original entry on oeis.org

0, 0, 0, 0, 12, 120, 2460, 64680, 2323692, 111920760, 7272700860, 639739653960, 76764606923532, 12645557866982040, 2878366780307114460, 909775941009828296040, 401039212596034472197932, 247339947733328456032703160, 214013123181627427780427544060
Offset: 0

Views

Author

Mathieu Guay-Paquet, Jan 18 2013

Keywords

Comments

A bicolored graph on n labeled vertices, k of which are black, and (n-k) of which are white, can be represented as a k X (n-k) matrix, where the (i,j) entry is 1 if the i-th black vertex is adjacent to the j-th white vertex, and 0 otherwise. Then, the graph is tangled if (1) the matrix does not have any rows or columns of all 0's or all 1's; and (2) it is not possible to permute the rows of the matrix and the columns of the matrix to obtain a matrix of the form
[ A | J ]
[---+---]
[ 0 | B ]
where the top right block J consists of all 1's, and the bottom left block 0 consists of all 0's.

Examples

			The only tangled bicolored graph on 4 vertices (up to isomorphism) consists of 2 black vertices, 2 white vertices, and 2 edges, with each black vertex joined to a different white vertex. Given 4 labels, there are 12 distinct ways of labeling the vertices, so a(4) = 1.
		

Crossrefs

Programs

  • Mathematica
    nmax = 19;
    B[x_] = Sum[Exp[2^n x] x^n/n!, {n, 0, nmax}] + O[x]^nmax;
    T[x_] = 2 Exp[-x] - 1 - 1/B[x] + O[x]^nmax;
    CoefficientList[T[x], x] Range[0, nmax-1]! (* Jean-François Alcover, Aug 12 2018 *)

Formula

E.g.f.: T(x) = 2*e^(-x) - 1 - 1/B(x), where B(x) is the e.g.f. for A047863.

A222863 Strongly graded (3+1)-free partially ordered sets (posets) on n labeled vertices.

Original entry on oeis.org

1, 1, 3, 13, 111, 1381, 22383, 461413, 12163791, 420626821, 19880808303, 1337330559973, 130909732781391, 18649561895661061, 3830195104867879023, 1124247654215697637093, 469367653568553278229711, 278046313987470874905216901, 233462156432002170491075384943
Offset: 0

Views

Author

Joel B. Lewis, Mar 07 2013

Keywords

Comments

Here "strongly graded" means that every maximal chain has the same length. Alternate terminology includes "graded" (e.g., in Stanley 2012) and "tiered" (as in A006860). A poset is said to be (3+1)-free if it does not contain four elements a, b, c, d such that a < b < c and d is incomparable to the other three.

References

  • R. P. Stanley, Enumerative Combinatorics, Volume 1. Cambridge University Press. 2nd edition, 2012. http://math.mit.edu/~rstan/ec/ec1/

Crossrefs

For strongly graded (3+1)-free posets by height, see A222864. For weakly graded (3+1)-free posets, see A222865. For all strongly graded posets, see A006860. For all (3+1)-free posets, see A079145.

Programs

  • Mathematica
    m = maxExponent = 19;
    Psi[x_] = Sum[E^(2^n*x)*x^n/n!, {n, 0, m}] + O[x]^m;
    H[x_, y_] = 1+(2x^3 - 3x^2 + (x^3 - 4x^2 + 4x)y)/(2x^2 + x + (x^2-2x-1) y);
    CoefficientList[H[E^x, Psi[x]] + O[x]^m, x] Range[0, m-1]! (* Jean-François Alcover, Dec 11 2018 *)

Formula

G.f.: H(e^x, Psi(x)) where H(x, y) = 1 + (2x^3 - 3x^2 + (x^3 - 4x^2 + 4x)y)/(2x^2 + x + (x^2 - 2x - 1)y) and Psi(x) is the g.f. for A047863.

A222864 Triangle T(n,k) of strongly graded (3+1)-free partially ordered sets (posets) on n labeled vertices with height k.

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 50, 36, 24, 1, 510, 510, 240, 120, 1, 7682, 7380, 4800, 1800, 720, 1, 161406, 141246, 91560, 47040, 15120, 5040, 1, 4747010, 3444756, 2162664, 1134000, 493920, 141120, 40320, 1, 194342910, 110729310, 61286400, 32253480, 14605920, 5594400
Offset: 1

Views

Author

Joel B. Lewis, Mar 07 2013

Keywords

Comments

Here "strongly graded" means that every maximal chain has the same length. Alternate terminology includes "graded" (e.g., in Stanley 2011) and "tiered" (as in A006860). A poset is said to be (3+1)-free if it does not contain four elements a, b, c, d such that a < b < c and d is incomparable to the other three.

Examples

			For n = 3, there is 1 strongly graded poset of height 1 (the antichain), 6 strongly graded posets of height 2, and 6 strongly graded posets of height 3 (the chains), and all of these are (3+1)-free. Thus, the third row of the triangle is 1, 6, 6.
		

Crossrefs

For row-sums (strongly graded (3+1)-free posets with n labeled vertices, disregarding height), see A222863. For weakly graded (3+1)-free posets, see A222865. For all strongly graded posets, see A006860. For all (3+1)-free posets, see A079145.

Formula

G.f. is given in the Lewis-Zhang paper.

A222865 Weakly graded (3+1)-free partially ordered sets (posets) on n labeled vertices.

Original entry on oeis.org

1, 1, 3, 19, 195, 2551, 41343, 826939, 20616795, 658486351, 28264985223, 1725711709459, 155998194920835, 21019550046219271, 4162663551546902223, 1192847436856343300779, 489879387071459457083115, 286844271719979335180726911, 238844671940165660117456403543
Offset: 0

Views

Author

Joel B. Lewis, Mar 07 2013

Keywords

Comments

Here "weakly graded" means that there is a rank function rk from the vertices to the integers such that whenever x covers y we have rk(x) = rk(y) + 1. Alternate terminology includes "graded" and "ranked." A poset is said to be (3+1)-free if it does not contain four vertices a, b, c, d such that a < b < c and d is incomparable to the other three.

Crossrefs

For weakly graded (3+1)-free posets by height, see A222866. For strongly graded (3+1)-free posets, see A222863. For all weakly graded posets, see A001833. For all (3+1)-free posets, see A079145.

Programs

  • Mathematica
    m = maxExponent = 19;
    Psi[x_] = Sum[E^(2^n x) x^n/n!, {n, 0, m}] + O[x]^m;
    W[x_, y_] = (1-x)y/x + (2x^3 + (x^3 - 2x^2)y)/(2x^2 + x + (x^2-2x-1) y);
    CoefficientList[W[E^x, Psi[x]] + O[x]^m, x] Range[0, m-1]! (* Jean-François Alcover, Dec 11 2018 *)

Formula

G.f. is W(e^x, Psi(x)) where W(x, y) = (1 - x)y/x + (2x^3 + (x^3 - 2x^2)y)/(2x^2 + x + (x^2 - 2x - 1)y) and Psi(x) is the GF for A047863.

A221494 Table read by downward diagonals: T(n,k) = number of skeleta of (3+1)-free posets with n clone sets and k tangles.

Original entry on oeis.org

1, 1, 1, 3, 5, 1, 12, 28, 16, 2, 55, 165, 152, 47, 4, 273, 1001, 1265, 658, 136, 9, 1428, 6188, 9919, 7315, 2547, 392, 21, 7752, 38760, 75208, 71981, 35975, 9252, 1130, 51, 43263, 245157, 558144, 657356, 431599, 159701, 32286, 3262, 127, 246675, 1562275
Offset: 0

Views

Author

Mathieu Guay-Paquet, Jan 18 2013

Keywords

Examples

			There are 28 skeleta of (3+1)-free posets with 1 clone set and 2 tangles.
Table begins
  1   1    3     12      55      273 ...
  1   5   28    165    1001     6188 ...
  1  16  152   1265    9919    75208 ...
  2  47  658   7315   71981   657356 ...
  4 136 2547  35975  431599  4660516 ...
  9 392 9252 159701 2277821 28589750 ...
  ......................................
		

Crossrefs

Formula

G.f.: S(x, y) is the unique power series solution of the equation S(x, y) = 1 + S(x, y)^2 * x / (1 + x) + S(x, y)^3 * y.

A222866 Triangle T(n,k) of weakly graded (3+1)-free partially ordered sets (posets) on n labeled vertices with height k.

Original entry on oeis.org

1, 1, 2, 1, 12, 6, 1, 86, 84, 24, 1, 840, 1110, 480, 120, 1, 11642, 16620, 9120, 3240, 720, 1, 227892, 300846, 185640, 82320, 25200, 5040, 1, 6285806, 6810804, 4299624, 2142000, 816480, 221760, 40320, 1, 243593040, 199239270, 117205200, 60890760, 26157600
Offset: 1

Views

Author

Joel B. Lewis, Mar 07 2013

Keywords

Comments

Here "weakly graded" means that there is a rank function rk from the vertices to the integers such that whenever x covers y we have rk(x) = rk(y) + 1. Alternate terminology includes "graded" and "ranked." A poset is said to be (3+1)-free if it does not contain four elements a, b, c, d such that a < b < c and d is incomparable to the other three.

Crossrefs

For row-sums (weakly graded (3+1)-free posets with n labeled vertices, disregarding height), see A222865. For strongly graded (3+1)-free posets, see A222863. For all weakly graded posets, see A001833. For all (3+1)-free posets, see A079145.

Formula

G.F. is given in the Lewis-Zhang paper.
Showing 1-7 of 7 results.