cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A090313 a(n) = 22*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 22.

Original entry on oeis.org

2, 22, 486, 10714, 236194, 5206982, 114789798, 2530582538, 55787605634, 1229857906486, 27112661548326, 597708411969658, 13176697724880802, 290485058359347302, 6403847981630521446, 141175140654230819114
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n-> infinity} a(n)/a(n+1) = 0.045361... = 1/(11+sqrt(122)) = (sqrt(122)-11).
Lim_{n-> infinity} a(n+1)/a(n) = 22.045361... = (11+sqrt(122)) = 1/(sqrt(122)-11).

Examples

			a(4) = 236194 = 22*a(3) + a(2) = 22*10714 + 486 = (11 + sqrt(122))^4 + (11 - sqrt(122))^4 = 236193.999995766 + 0.000004233 = 236194.
		

Crossrefs

Cf. A079219.
Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), this sequence (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25).

Programs

  • GAP
    m:=22;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
  • Magma
    m:=22; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 11*I)), n = 0..20); # G. C. Greubel, Dec 30 2019
  • Mathematica
    LucasL[Range[20]-1,22] (* G. C. Greubel, Dec 29 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 11*I) ) \\ G. C. Greubel, Dec 30 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 11*I) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

a(n) = 22*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 22.
a(n) = (11+sqrt(122))^n + (11-sqrt(122))^n.
(a(n))^2 = a(2n) - 2 if n=1, 3, 5...,
(a(n))^2 = a(2n) + 2 if n=2, 4, 6....
G.f.: (2-22*x)/(1-22*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 22) = 2*(-i)^n * ChebyshevT(n, 11*i). - G. C. Greubel, Dec 30 2019

Extensions

More terms from Ray Chandler, Feb 14 2004

A079217 Triangle T(n,d) (listed row-wise: T(1,1)=1, T(2,1)=1, T(2,2)=1, T(3,1)=2, T(3,2)=0, T(3,3)=1, ...) giving the number of n-edge general plane trees with root degree d that are fixed by Catalan Automorphisms A057511/A057512 (Deep rotation of general parenthesizations/plane trees).

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 5, 0, 0, 0, 1, 6, 2, 1, 0, 0, 1, 10, 0, 0, 0, 0, 0, 1, 11, 5, 0, 1, 0, 0, 0, 1, 18, 0, 2, 0, 0, 0, 0, 0, 1, 21, 11, 0, 0, 1, 0, 0, 0, 0, 1, 34, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 35, 26, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1, 68, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 69, 66, 0, 0, 0, 0, 1, 0, 0
Offset: 0

Views

Author

Antti Karttunen Jan 03 2002

Keywords

Crossrefs

The row sums equal to the left edge shifted left once = A057546 = first row of A079216 (the latter gives the Maple procedure PFixedByA057511).

Programs

A079222 Triangle T(n,d) (listed row-wise: T(1,1)=1, T(2,1)=1, T(2,2)=1, T(3,1)=2, T(3,2)=2, T(3,3)=1, ...) giving the number of n-edge general plane trees with root degree d that are fixed by the six-fold application of Catalan Automorphisms A057511/A057512 (Deep rotation of general parenthesizations/plane trees).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 14, 14, 9, 0, 1, 38, 42, 28, 2, 0, 1, 111, 124, 90, 0, 0, 6, 1, 332, 379, 285, 5, 0, 27, 0, 1, 1029, 1178, 914, 0, 0, 110, 0, 0, 1, 3232, 3742, 2955, 14, 1, 429, 0, 0, 0, 1, 10374, 12024, 9666, 0, 0, 1614, 0, 0, 0, 0, 1, 33679, 39200, 31853, 42, 0
Offset: 0

Views

Author

Antti Karttunen Jan 03 2002

Keywords

Comments

Note: the counts given here are inclusive, i.e. T(n,d) includes also the counts A079218(n,d) and A079219(n,d).

Crossrefs

The row sums equal to the left edge shifted left once = A079227 = sixth row of A079216 (the latter gives the Maple procedure PFixedByA057511). Cf. also A079217-A079221 and A003056 & A002262.

Programs

A079224 Number of Catalan objects fixed by three-fold application of the Catalan bijections A057511/A057512 (Deep rotation of general parenthesizations/plane trees).

Original entry on oeis.org

1, 1, 2, 3, 8, 18, 43, 104, 273, 702, 1870, 4985, 13562, 37038, 102266, 283774, 793189, 2227115, 6286044, 17811751, 50672898, 144639235, 414181050, 1189365940, 3424477813, 9883578364, 28589660227, 82870288432, 240672107114
Offset: 0

Views

Author

Antti Karttunen Jan 03 2002

Keywords

Crossrefs

The third row of A079216. The leftmost edge of the triangle A079219 and also its row sums shifted by one. Occurs in A073202 as row 43639. Cf. A057546, A079223-A079227.

Programs

Formula

a(n) = A079216(n, 3)
Showing 1-4 of 4 results.