A079247 Number of pairs (p,q), 0 <= p < q, such that p+q divides n.
1, 2, 3, 4, 4, 7, 5, 8, 8, 10, 7, 15, 8, 13, 14, 16, 10, 21, 11, 22, 18, 19, 13, 31, 17, 22, 22, 29, 16, 38, 17, 32, 26, 28, 26, 47, 20, 31, 30, 46, 22, 50, 23, 43, 42, 37, 25, 63, 30, 48, 38, 50, 28, 62, 38, 61, 42, 46, 31, 86, 32, 49, 55, 64, 44, 74, 35, 64, 50, 74, 37, 99, 38
Offset: 1
Examples
There are 7 pairs (p,q), 0 <= p < q, such that p+q divides 6: (0,1), (0,2), (0,3), (0,6), (1, 2), (1, 5), (2, 4); thus a(6) = 7. G.f. = x + 2*x^2 + 3*x^3 + 4*x^4 + 4*x^5 + 7*x^6 + 5*x^7 + 8*x^8 + 8*x^9 + ...
Programs
-
Maple
with(numtheory): seq((sigma(n)+tau(2*n)-tau(n))/2,n=1 .. 80); # - Ridouane Oudra, Sep 06 2020
-
PARI
{a(n) = if( n<1, 0, sumdiv( n, d, (1 + d)\2))} /* Michael Somos, Jun 11 2003 */
Formula
Inverse Moebius transform of A008619 (offset 1). - Michael Somos, Jun 11 2003
G.f.: Sum_{k>=1} x^k / ((1 - x^k) * (1 - x^(2*k))). - Michael Somos, Jun 11 2003
G.f.: Sum_{n>=1} A110654(n)*x^n/(1-x^n). - Mircea Merca, Feb 26 2014
Comments