cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079267 d(n,s) = number of perfect matchings on {1, 2, ..., n} with s short pairs.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 5, 6, 3, 1, 36, 41, 21, 6, 1, 329, 365, 185, 55, 10, 1, 3655, 3984, 2010, 610, 120, 15, 1, 47844, 51499, 25914, 7980, 1645, 231, 21, 1, 721315, 769159, 386407, 120274, 25585, 3850, 406, 28, 1, 12310199, 13031514, 6539679, 2052309, 446544, 70371, 8106, 666, 36, 1
Offset: 0

Views

Author

Jeremy Martin (martin(AT)math.umn.edu), Feb 05 2003

Keywords

Comments

Read backwards, the n-th row of the triangle gives the Hilbert series of the variety of slopes determined by n points in the plane.
From Paul Barry, Nov 25 2009: (Start)
Reversal of coefficient array for the polynomials P(n,x) = Sum_{k=0..n} (C(n+k,2k)*(2k)!/(2^k*k!))*x^k*(1-x)^(n-k).
Note that P(n,x) = Sum_{k=0..n} A001498(n,k)*x^k*(1-x)^(n-k). (End)
Equivalent to the original definition: Triangle of fixed-point free involutions on [1..2n] (=A001147) by number of cycles with adjacent integers. - Olivier Gérard, Mar 23 2011
Conjecture: Asymptotically, the n-th row has a Poisson distribution with mean 1. - David Callan, Nov 11 2012
This is also the number of configurations of n indistinguishable pairs placed on the vertices of the ladder graph P_1 X P_2n (i.e., a path of length 2n) such that s such pairs are joined by an edge; equivalently the number of "s-domino" configurations in the game of memory played on a 1 X 2n rectangular array, see [Young]. - Donovan Young, Oct 23 2018

Examples

			Triangle begins:
   1
   0  1
   1  1  1
   5  6  3 1
  36 41 21 6 1
From _Paul Barry_, Nov 25 2009: (Start)
Production matrix begins
       0,      1,
       1,      1,      1,
       4,      4,      2,     1,
      18,     18,      9,     3,     1,
      96,     96,     48,    16,     4,    1,
     600,    600,    300,   100,    25,    5,   1,
    4320,   4320,   2160,   720,   180,   36,   6,  1,
   35280,  35280,  17640,  5880,  1470,  294,  49,  7, 1,
  322560, 322560, 161280, 53760, 13440, 2688, 448, 64, 8, 1
Complete this by adding top row (1,0,0,0,...) and take inverse: we obtain
   1,
   0,  1,
  -1, -1,  1,
  -2, -2, -2,  1,
  -3, -3, -3, -3,  1,
  -4, -4, -4, -4, -4,  1,
  -5, -5, -5, -5, -5, -5,  1,
  -6, -6, -6, -6, -6, -6, -6,  1,
  -7, -7, -7, -7, -7, -7, -7, -7,  1,
  -8, -8, -8, -8, -8, -8, -8, -8, -8,  1 (End)
The 6 involutions with no fixed point on [1..6] with only one 2-cycle with adjacent integers are ((1, 2), (3, 5), (4, 6)), ((1, 3), (2, 4), (5, 6)), ((1, 3), (2, 6), (4, 5)), ((1, 5), (2, 3), (4, 6)), ((1, 5), (2, 6), (3, 4)), and ((1, 6), (2, 5), (3, 4)).
		

References

  • G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonné, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74.

Crossrefs

Row sums are A001147.
d(2n,n) gives A365744.

Programs

  • Maple
    d := (n,s) -> 1/s! * sum('((-1)^(h-s)*(2*n-h)!/(2^(n-h)*(n-h)!*(h-s)!))','h'=s..n):
    # alternative by R. J. Mathar, Aug 19 2022
    A079267 := proc(n,k)
        option remember ;
        if n =0 and k =0 then
            1;
        elif k > n or k < 0 then
            0;
        else
            procname(n-1,k-1)+(2*n-2-k)*procname(n-1,k)+(k+1)*procname(n-1,k+1) ;
        end if;
    end proc:
    seq(seq( A079267(n,k),k=0..n),n=0..13) ;
  • Mathematica
    nmax = 9; d[n_, s_] := (2^(s-n)*(2n-s)!* Hypergeometric1F1[s-n, s-2n, -2])/ (s!*(n-s)!); Flatten[ Table[d[n, s], {n, 0, nmax}, {s, 0, n}]] (* Jean-François Alcover, Oct 19 2011, after Maple *)
  • PARI
    {T(n, k) = 2^(k-n)*binomial(n,k)*hyperu(k-n, k-2*n, -2)};
    for(n=0,10, for(k=0,n, print1(round(T(n,k)), ", "))) \\ G. C. Greubel, Apr 10 2019
    
  • Sage
    [[2^(k-n)*binomial(n,k)*hypergeometric_U(k-n,k-2*n,-2).simplify_hypergeometric() for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 10 2019

Formula

d(n, s) = (1/s!) * Sum_{h=s..n} (((-1)^(h-s)*(2*n-h)!/(2^(n-h)*(n-h)!*(h-s)!))).
E.g.f.: exp((x-1)*(1-sqrt(1-2*y)))/sqrt(1-2*y). - Vladeta Jovovic, Dec 15 2008

Extensions

Extra terms added by Paul Barry, Nov 25 2009