A079267 d(n,s) = number of perfect matchings on {1, 2, ..., n} with s short pairs.
1, 0, 1, 1, 1, 1, 5, 6, 3, 1, 36, 41, 21, 6, 1, 329, 365, 185, 55, 10, 1, 3655, 3984, 2010, 610, 120, 15, 1, 47844, 51499, 25914, 7980, 1645, 231, 21, 1, 721315, 769159, 386407, 120274, 25585, 3850, 406, 28, 1, 12310199, 13031514, 6539679, 2052309, 446544, 70371, 8106, 666, 36, 1
Offset: 0
Examples
Triangle begins: 1 0 1 1 1 1 5 6 3 1 36 41 21 6 1 From _Paul Barry_, Nov 25 2009: (Start) Production matrix begins 0, 1, 1, 1, 1, 4, 4, 2, 1, 18, 18, 9, 3, 1, 96, 96, 48, 16, 4, 1, 600, 600, 300, 100, 25, 5, 1, 4320, 4320, 2160, 720, 180, 36, 6, 1, 35280, 35280, 17640, 5880, 1470, 294, 49, 7, 1, 322560, 322560, 161280, 53760, 13440, 2688, 448, 64, 8, 1 Complete this by adding top row (1,0,0,0,...) and take inverse: we obtain 1, 0, 1, -1, -1, 1, -2, -2, -2, 1, -3, -3, -3, -3, 1, -4, -4, -4, -4, -4, 1, -5, -5, -5, -5, -5, -5, 1, -6, -6, -6, -6, -6, -6, -6, 1, -7, -7, -7, -7, -7, -7, -7, -7, 1, -8, -8, -8, -8, -8, -8, -8, -8, -8, 1 (End) The 6 involutions with no fixed point on [1..6] with only one 2-cycle with adjacent integers are ((1, 2), (3, 5), (4, 6)), ((1, 3), (2, 4), (5, 6)), ((1, 3), (2, 6), (4, 5)), ((1, 5), (2, 3), (4, 6)), ((1, 5), (2, 6), (3, 4)), and ((1, 6), (2, 5), (3, 4)).
References
- G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonné, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened).
- Marilena Barnabei, Niccolò Castronuovo, and Matteo Silimbani, Hertzsprung patterns on involutions, arXiv:2412.03449 [math.CO], 2024. See p. 10.
- Naiomi T. Cameron and Kendra Killpatrick, Statistics on Linear Chord Diagrams, arXiv:1902.09021 [math.CO], 2019.
- E. S. Krasko, I.N. Labutin, and A. V. Omelchenko, Enumeration of labeled and unlabeled Hamiltonian cycles in complete k-partite graphs, J. Math. Sci. 255 (2021) 71-87, eq (5).
- G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonné, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74. (Annotated scanned copy)
- Avichai Marmor, Schur-Positivity of Short Chords in Matchings, arXiv:2307.09894 [math.CO], 2023.
- Jeremy L. Martin, The slopes determined by n points in the plane, arXiv:math/0302106 [math.AG], 2003-2006.
- Jeremy L. Martin, The slopes determined by n points in the plane, Duke Math. J., Volume 131, Number 1 (2006), 119-165.
- Donovan Young, The Number of Domino Matchings in the Game of Memory, Journal of Integer Sequences, Vol. 21 (2018), Article 18.8.1.
- Donovan Young, Generating Functions for Domino Matchings in the 2 * k Game of Memory, arXiv:1905.13165 [math.CO], 2019. Also in J. Int. Seq., Vol. 22 (2019), Article 19.8.7.
- Donovan Young, Bubbles in Linear Chord Diagrams: Bridges and Crystallized Diagrams, arXiv:2408.17232 [math.CO], 2024. See p. 18.
Crossrefs
Programs
-
Maple
d := (n,s) -> 1/s! * sum('((-1)^(h-s)*(2*n-h)!/(2^(n-h)*(n-h)!*(h-s)!))','h'=s..n): # alternative by R. J. Mathar, Aug 19 2022 A079267 := proc(n,k) option remember ; if n =0 and k =0 then 1; elif k > n or k < 0 then 0; else procname(n-1,k-1)+(2*n-2-k)*procname(n-1,k)+(k+1)*procname(n-1,k+1) ; end if; end proc: seq(seq( A079267(n,k),k=0..n),n=0..13) ;
-
Mathematica
nmax = 9; d[n_, s_] := (2^(s-n)*(2n-s)!* Hypergeometric1F1[s-n, s-2n, -2])/ (s!*(n-s)!); Flatten[ Table[d[n, s], {n, 0, nmax}, {s, 0, n}]] (* Jean-François Alcover, Oct 19 2011, after Maple *)
-
PARI
{T(n, k) = 2^(k-n)*binomial(n,k)*hyperu(k-n, k-2*n, -2)}; for(n=0,10, for(k=0,n, print1(round(T(n,k)), ", "))) \\ G. C. Greubel, Apr 10 2019
-
Sage
[[2^(k-n)*binomial(n,k)*hypergeometric_U(k-n,k-2*n,-2).simplify_hypergeometric() for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 10 2019
Formula
d(n, s) = (1/s!) * Sum_{h=s..n} (((-1)^(h-s)*(2*n-h)!/(2^(n-h)*(n-h)!*(h-s)!))).
E.g.f.: exp((x-1)*(1-sqrt(1-2*y)))/sqrt(1-2*y). - Vladeta Jovovic, Dec 15 2008
Extensions
Extra terms added by Paul Barry, Nov 25 2009
Comments