A079326 a(n) = the largest number m such that if m monominoes are removed from an n X n square then an L-tromino must remain.
1, 2, 7, 9, 17, 20, 31, 35, 49, 54, 71, 77, 97, 104, 127, 135, 161, 170, 199, 209, 241, 252, 287, 299, 337, 350, 391, 405, 449, 464, 511, 527, 577, 594, 647, 665, 721, 740, 799, 819, 881, 902, 967, 989, 1057, 1080, 1151, 1175, 1249, 1274, 1351, 1377, 1457
Offset: 2
Examples
a(3)=2 because if a middle row of 3 monominoes are removed from the 3 X 3, no L remains.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Mathematica
Table[FrobeniusNumber[{a, a + 1, a + 2}], {a, 2, 54}] (* Zak Seidov, Jan 08 2015 *)
Formula
a(n) = (n^2)/2 - 1 (n even), (n^2-n)/2 - 1 (n odd).
a(n) = A204557(n-1) / (n-1). - Reinhard Zumkeller, Jan 18 2012
From Bruno Berselli, Jan 18 2011: (Start)
G.f.: x^2*(1+x+3*x^2-x^4)/((1+x)^2*(1-x)^3).
a(n) = n*(2*n+(-1)^n-1)/4 - 1.
a(n) = A105638(-n+2). (End)
Extensions
Edited by Don Reble, May 28 2007