cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079326 a(n) = the largest number m such that if m monominoes are removed from an n X n square then an L-tromino must remain.

Original entry on oeis.org

1, 2, 7, 9, 17, 20, 31, 35, 49, 54, 71, 77, 97, 104, 127, 135, 161, 170, 199, 209, 241, 252, 287, 299, 337, 350, 391, 405, 449, 464, 511, 527, 577, 594, 647, 665, 721, 740, 799, 819, 881, 902, 967, 989, 1057, 1080, 1151, 1175, 1249, 1274, 1351, 1377, 1457
Offset: 2

Views

Author

Mambetov Timur (timur_teufel(AT)mail.ru), Feb 13 2003

Keywords

Examples

			a(3)=2 because if a middle row of 3 monominoes are removed from the 3 X 3, no L remains.
		

Crossrefs

Frobenius number for k successive numbers: A028387 (k=2), this sequence (k=3), A138984 (k=4), A138985 (k=5), A138986 (k=6), A138987 (k=7), A138988 (k=8).

Programs

  • Mathematica
    Table[FrobeniusNumber[{a, a + 1, a + 2}], {a, 2, 54}] (* Zak Seidov, Jan 08 2015 *)

Formula

a(n) = (n^2)/2 - 1 (n even), (n^2-n)/2 - 1 (n odd).
a(n) = A204557(n-1) / (n-1). - Reinhard Zumkeller, Jan 18 2012
From Bruno Berselli, Jan 18 2011: (Start)
G.f.: x^2*(1+x+3*x^2-x^4)/((1+x)^2*(1-x)^3).
a(n) = n*(2*n+(-1)^n-1)/4 - 1.
a(n) = A105638(-n+2). (End)

Extensions

Edited by Don Reble, May 28 2007