cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079344 F(n) mod 8, where F(n) = A000045(n) is the n-th Fibonacci number.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5
Offset: 0

Views

Author

Jon Perry, Jan 04 2003

Keywords

Comments

This sequence does not contain the complete set of residues modulo 8. See A079002. - Michel Marcus, Jan 31 2020

Examples

			a(8) = F(8) mod 8 = 21 mod 8 = 5.
		

Crossrefs

Programs

  • Magma
    [Fibonacci(n) mod 8: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014
  • Mathematica
    Mod[Fibonacci[Range[0,110]],8] (* or *) LinearRecurrence[ {1,0,0,-1,1,0,0,-1,1},{0,1,1,2,3,5,0,5,5},110] (* Harvey P. Dale, Jan 16 2014 *)
  • PARI
    for (n=0,100,print1(fibonacci(n)%8","))
    

Formula

Sequence is periodic with Pisano period 12 = A001175(8).
G.f.: -x*(1+x^2+x^3+3*x^4+6*x^6-5*x^5+x^7) / ( (x-1)*(x^2-x+1)*(1+x+x^2)*(x^4-x^2+1) ). - R. J. Mathar, Aug 08 2012

Extensions

Edited by N. J. A. Sloane, Dec 06 2008 at the suggestion of R. J. Mathar