cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A136616 a(n) = largest m with H(m) - H(n) <= 1, where H(i) = Sum_{j=1 to i} 1/j, the i-th harmonic number, H(0) = 0.

Original entry on oeis.org

1, 3, 6, 9, 11, 14, 17, 19, 22, 25, 28, 30, 33, 36, 38, 41, 44, 47, 49, 52, 55, 57, 60, 63, 66, 68, 71, 74, 76, 79, 82, 85, 87, 90, 93, 96, 98, 101, 104, 106, 109, 112, 115, 117, 120, 123, 125, 128, 131, 134, 136, 139, 142, 144, 147, 150, 153, 155, 158, 161, 163, 166
Offset: 0

Views

Author

Rainer Rosenthal, Jan 13 2008

Keywords

Examples

			a(3) = 9 because H(9) - H(3) = 1/4 + ... + 1/9 < 1 < 1/4 + ... + 1/10 = H(10) - H(3).
		

Crossrefs

Programs

  • Maple
    e:= exp(1):
    A136616 := n -> floor( e*n + (e-1)/2 + (e - 1/e)/(24*(n + 1/2))):
    seq(A136616(n), n=0..50);
  • PARI
    default(realprecision, 10^5); e=exp(1);
    a(n) = floor(e*n+(e-1)/2+(e-1/e)/(24*n+12)); \\ Jinyuan Wang, Mar 06 2020

Formula

a(n) = floor(e*n + (e-1)/2 + (e - 1/e)/(24*(n + 1/2))), after a suggestion by David Cantrell.
a(n) = A103762(n+1) - 1 = A136617(n+1) + n for n > 0. - Jinyuan Wang, Mar 06 2020

Extensions

Definition corrected by David W. Cantrell, Apr 14 2008

A136617 a(n) = largest k such that the sum of k consecutive reciprocals 1/n + ... + 1/(n+k-1) does not exceed 1.

Original entry on oeis.org

1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 18, 19, 21, 23, 24, 26, 28, 30, 31, 33, 35, 36, 38, 40, 42, 43, 45, 47, 48, 50, 52, 54, 55, 57, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 76, 78, 79, 81, 83, 85, 86, 88, 90, 91, 93, 95, 97, 98, 100, 102, 103, 105, 107, 109, 110, 112, 114, 115
Offset: 1

Views

Author

Rainer Rosenthal, Jan 13 2008

Keywords

Comments

Heuristic formula from David Cantrell (SeqFan mailing list, January 2008). Think of a ruler with harmonic numbers H(n) as marks. Then A136617(n) gives the number of marks m-n+1 = A136616(n)-n+1:
.............H........H.....H........***.....H.......
..............n-1......n.....n+1..............m......
...........----o-------+------+-----.***.-----+-o----
................\____________..____________/......
...............................\/.....................
............................Length 1..................
The first 23 terms of A083088 are identical to those of A136617 but the limits of A083088(n)/n and A136617(n)/n for n->oo are different.

Examples

			a(3) = 4 because 1/3+1/4+1/5+1/6 < 1 has 4 summands; adding 1/7 exceeds 1.
		

Crossrefs

Programs

  • Maple
    A136617 := proc(n) local t, m; t:= 0; for m from n do t:= t+1/m; if t > 1 then return m-n; fi; od; end proc;[seq(A136617(n),n=1..100)]; # Robert Israel, Jan 2008
  • Mathematica
    Table[Module[{start = Floor[z (E - 1)] - 1},
      NestWhile[# + 1 &, start, HarmonicNumber[# + z] - HarmonicNumber[z] + 1/z <= 1 &]], {z, 1, 100}] (* Peter J. C. Moses, Aug 20 2012 *)

Formula

a(n) = A136616(n-1) - n + 1 with David Cantrell's heuristics: a(n) = floor( (e - 1)*(n - 1/2) + (e - 1/e)/(24*(n - 1/2)) ).

A242654 1 followed by the union of the terms > 2 in A002387 (or A004080) and A115515.

Original entry on oeis.org

1, 3, 4, 10, 11, 30, 31, 82, 83, 226, 227, 615, 616, 1673, 1674, 4549, 4550, 12366, 12367, 33616, 33617, 91379, 91380, 248396, 248397, 675213, 675214, 1835420, 1835421, 4989190, 4989191, 13562026, 13562027, 36865411, 36865412, 100210580, 100210581, 272400599, 272400600, 740461600, 740461601, 2012783314
Offset: 1

Views

Author

N. J. A. Sloane, May 29 2014

Keywords

Comments

Ray Chandler, May 29 2014, proposes this as the most likely continuation of A079353.

Crossrefs

Programs

  • Mathematica
    b[n_] := Ceiling[k /. FindRoot[HarmonicNumber[k] == n, {k, Exp[n]}, WorkingPrecision -> 100]] - 1;
    bb = Array[b, 22];
    A242654 = Union[bb, bb + 1] // Rest (* Jean-François Alcover, Apr 10 2019 *)
Showing 1-3 of 3 results.