cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A079418 Numbers k such that prime(k)/k < prime(k-1)/(k-1).

Original entry on oeis.org

2, 6, 8, 11, 14, 18, 21, 27, 29, 32, 34, 36, 39, 42, 44, 45, 46, 49, 50, 51, 53, 58, 60, 61, 64, 65, 66, 70, 71, 76, 79, 82, 84, 86, 89, 90, 91, 94, 96, 99, 105, 110, 113, 114, 117, 118, 121, 123, 132, 135, 137, 141, 143, 144, 145, 148, 149, 150, 152, 153, 154, 156
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 07 2003

Keywords

Crossrefs

Programs

Formula

a(n) = A049084(A079419(n)).
a(n) = PrimePi(A079419(n)). - Amiram Eldar, Mar 25 2025

A079417 Numbers n such that round(prime(n)/n) < round(prime(n-1)/(n-1)).

Original entry on oeis.org

21, 117, 4117, 4137, 4139, 4142, 4144, 4152, 63326, 63416, 63424, 399872, 399918, 399930, 399944, 399949, 399955, 1014615, 1014635, 1014648, 2582130, 2582200, 2582205, 2582242, 2582374, 2582437, 2582460, 2582483, 2582486, 6592657
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 07 2003

Keywords

Comments

A079416(a(n)) < A079416(a(n-1)).

Crossrefs

A subsequence of A079418.

Programs

  • Mathematica
    Reap[For[n = 2, n <= 7*10^6, n++, If[Round[Prime[n]/n] < Round[Prime[n-1]/(n-1)], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jun 10 2017 *)

Extensions

More terms from Sascha Kurz, Jan 09 2003 and from Dean Hickerson, Jan 17 2003

A082896 a(n) = A082893(n)/n.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Labos Elemer, Apr 22 2003

Keywords

Comments

Checked for the first 120000 terms to be the same as A079416. - R. J. Mathar, Sep 17 2008

Crossrefs

Programs

  • Mathematica
    Table[Floor[(Floor[n/2]+Prime)/n], {n, 1, 100}]

Formula

a(n) = floor((floor(n/2) + p(n))/n), where p(n) is the n-th prime.

A079415 a(n) = floor(prime(n)/n) * ceiling(prime(n)/n) / 2.

Original entry on oeis.org

2, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15, 10, 10, 10, 15, 15, 15, 15, 15, 15, 15
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 07 2003

Keywords

Crossrefs

Programs

  • Magma
    [Floor(NthPrime(n)/n)*Ceiling(NthPrime(n)/n)/2: n in [1..80]]; // G. C. Greubel, Jan 19 2019
    
  • Mathematica
    fc[n_]:=Module[{c=Prime[n]/n},(Floor[c]Ceiling[c])/2]; Array[fc,80] (* Harvey P. Dale, May 20 2015 *)
  • PARI
    vector(80, n, floor(prime(n)/n)*ceil(prime(n)/n)/2) \\ G. C. Greubel, Jan 19 2019
    
  • Sage
    [floor(nth_prime(n)/n)*ceil(nth_prime(n)/n)/2 for n in (1..80)] # G. C. Greubel, Jan 19 2019
Showing 1-4 of 4 results.