A079458 Number of Gaussian integers in a reduced system modulo n.
1, 2, 8, 8, 16, 16, 48, 32, 72, 32, 120, 64, 144, 96, 128, 128, 256, 144, 360, 128, 384, 240, 528, 256, 400, 288, 648, 384, 784, 256, 960, 512, 960, 512, 768, 576, 1296, 720, 1152, 512, 1600, 768, 1848, 960, 1152, 1056, 2208, 1024, 2352, 800, 2048, 1152, 2704
Offset: 1
Examples
{1, i, 1+2i, 2+i, 3, 3i, 3+2i, 2+3i} is the set of eight units in the Gaussian integers modulo 4. - _Jason Kimberley_, Dec 07 2015
Links
- Jason Kimberley, Table of n, a(n) for n = 1..10000
- Jonathan M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016. [Wayback Machine link]
- Jonathan M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016. [Cached copy, with permission]
- Catalina Calderón, Jose Maria Grau, A. Oller-Marcén, and László Tóth, Counting invertible sums of squares modulo n and a new generalization of Euler's totient function, Publicationes Mathematicae-Debrecen, Vol. 87 (1-2) (2015), pp. 133-145; arXiv preprint, arXiv:1403.7878 [math.NT], 2014.
Crossrefs
Equals four times A218147. - Jason Kimberley, Nov 14 2015
Sequences giving the number of solutions to the equation GCD(x_1^2+...+x_k^2, n) = 1 with 0 < x_i <= n: A000010 (k=1), A079458 (k=2), A053191 (k=3), A227499 (k=4), A238533 (k=5), A238534 (k=6), A239442 (k=7), A239441 (k=8), A239443 (k=9).
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), this sequence ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319445.
Programs
-
Magma
A079458 := func
)>; // Jason Kimberley, Nov 14 2015 -
Maple
with(GaussInt): seq(GIphi(n), n=1..100);
-
Mathematica
phi[1]=1;phi[p_, s_] := Which[Mod[p, 4] == 3, p^(2 s - 2) (p^2 - 1), Mod[p, 4] == 1, p^(2 s - 2) ((p - 1))^2, True, 2^(2 s - 1)];phi[n_] := Product[phi[FactorInteger[n][[i, 1]], FactorInteger[n][[i, 2]]], {i, Length[FactorInteger[n]]}];Table[phi[n], {n, 1, 33}] (* José María Grau Ribas, Mar 16 2014 *) f[p_, e_] := (p - 1)*p^(2*e - 1) * If[p == 2, 1, 1 - (-1)^((p-1)/2)/p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 13 2024 *)
-
PARI
a(n)= { my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); if(p==2, r*=2^(2*e-1)); if(p%4==1, r*=(p-1)^2*p^(2*e-2)); if(p%4==3, r*=(p^2-1)*p^(2*e-2)); ); return(r); } \\ Jianing Song, Sep 16 2018
Formula
Multiplicative with a(2^e) = 2^(2*e-1), a(p^e) = (p^2-1)*p^(2*e-2) if p mod 4=3 and a(p^e) = (p-1)^2*p^(2*e-2) if p mod 4=1.
a(n) = A003557(n)^2 * a(A007947(n)), where a(2)=2, a(p)=(p-1)^2 for prime p=1(mod 4), a(p)=p^2-1 for prime p=3(mod 4), and a(n*m)=a(n)*a(m) for n coprime to m. - Jason Kimberley, Nov 16 2015
From Amiram Eldar, Feb 13 2024: (Start)
Dirichlet g.f.: zeta(s-2) * (1 - 1/2^(s-1)) * Product_{p prime > 2} (1 - 1/p^(s-1) - (-1)^((p-1)/2)*(p-1)/p^s).
Sum_{k=1..n} a(k) = c * n^3 / 3 + O(n^2 * log(n)), where c = (3/4) * Product_{p prime > 2} (1 - 1/p^2 - (-1)^((p-1)/2)*(p-1)/p^3) = (3/4) * A334427 * Product_{p prime == 1 (mod 4)} (1 - 2/p^2 + 1/p^3) = 0.6498027559... (Calderón et al., 2015). (End)
Comments