cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079508 Triangle T(n,k) (n >= 2, k >= 1) of Raney numbers read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 0, 5, 1, 0, 0, 5, 9, 1, 0, 0, 0, 21, 14, 1, 0, 0, 0, 14, 56, 20, 1, 0, 0, 0, 0, 84, 120, 27, 1, 0, 0, 0, 0, 42, 300, 225, 35, 1, 0, 0, 0, 0, 0, 330, 825, 385, 44, 1, 0, 0, 0, 0, 0, 132, 1485, 1925, 616, 54, 1, 0, 0, 0, 0, 0, 0, 1287, 5005, 4004, 936, 65, 1
Offset: 2

Views

Author

N. J. A. Sloane, Jan 21 2003

Keywords

Comments

There are only m nonzero entries in the m-th column.
Related to A033282: shift row n of A033282 triangle n places to the right and transpose the resulting table. - Michel Marcus, Feb 04 2014

Examples

			From _Michel Marcus_, Feb 04 2014: (Start)
Triangle starts:
  1;
  0, 1;
  0, 2, 1;
  0, 0, 5,  1;
  0, 0, 5,  9,  1;
  0, 0, 0, 21, 14,   1;
  0, 0, 0, 14, 56,  20,    1;
  0, 0, 0,  0, 84, 120,   27,    1;
  0, 0, 0,  0, 42, 300,  225,   35,   1;
  0, 0, 0,  0,  0, 330,  825,  385,  44,  1;
  0, 0, 0,  0,  0, 132, 1485, 1925, 616, 54, 1;
  ... (End)
		

Crossrefs

Row sums give A005043.
Column sums give A001003.
Alternating sum of each column is 1.
Second diagonal on right gives A000096.
Central terms give A000108.
Cf. A033282, A126216 (transposed variants).

Programs

  • GAP
    Flat(List([1..10], n->List([1..n-1], k-> Binomial(k,n-k)*Binomial(n ,k+1)/k ))); # G. C. Greubel, Jan 17 2019
  • Magma
    [[Binomial(k,n-k)*Binomial(n,k+1)/k: k in [1..n-1]]: n in [2..10]]; // G. C. Greubel, Jan 17 2019
    
  • Mathematica
    Table[Binomial[k, n-k]*Binomial[n, k+1]/k, {n,2,10}, {k,1,n-1}]//Flatten (* G. C. Greubel, Jan 17 2019 *)
  • PARI
    tabl(nn) = {for (n = 2, nn, for (k = 1, n-1, print1(binomial(k, n-k)*binomial(n, k+1)/k, ", ");); print(););} \\ Michel Marcus, Feb 04 2014
    
  • Sage
    [[binomial(k,n-k)*binomial(n,k+1)/k for k in (1..n-1)] for n in (2..10)] # G. C. Greubel, Jan 17 2019
    

Formula

T(n,k) = binomial(k, n-k) * binomial(n, k+1)/k. - Michel Marcus, Feb 04 2014
From Andrew Howroyd, Jan 24 2025: (Start)
T(n,k) = A033282(k + 2, n - k - 1) = A126216(k, 2*k - n).
G.f.: -1 + ((1 + y*x) - sqrt(1 - 2*y*x + (y^2 - 4*y)*x^2))/(2*x*y*(1 + x)).
G.f.: -1 + (1/(x*y))*Series_Reversion(x*(1 - x)/(y - y*x + x^2)). (End)

Extensions

Corrected and extended by Michel Marcus, Feb 04 2014