A079508 Triangle T(n,k) (n >= 2, k >= 1) of Raney numbers read by rows.
1, 0, 1, 0, 2, 1, 0, 0, 5, 1, 0, 0, 5, 9, 1, 0, 0, 0, 21, 14, 1, 0, 0, 0, 14, 56, 20, 1, 0, 0, 0, 0, 84, 120, 27, 1, 0, 0, 0, 0, 42, 300, 225, 35, 1, 0, 0, 0, 0, 0, 330, 825, 385, 44, 1, 0, 0, 0, 0, 0, 132, 1485, 1925, 616, 54, 1, 0, 0, 0, 0, 0, 0, 1287, 5005, 4004, 936, 65, 1
Offset: 2
Examples
From _Michel Marcus_, Feb 04 2014: (Start) Triangle starts: 1; 0, 1; 0, 2, 1; 0, 0, 5, 1; 0, 0, 5, 9, 1; 0, 0, 0, 21, 14, 1; 0, 0, 0, 14, 56, 20, 1; 0, 0, 0, 0, 84, 120, 27, 1; 0, 0, 0, 0, 42, 300, 225, 35, 1; 0, 0, 0, 0, 0, 330, 825, 385, 44, 1; 0, 0, 0, 0, 0, 132, 1485, 1925, 616, 54, 1; ... (End)
Links
- G. C. Greubel, Rows n=2..100 of triangle, flattened
- Per Alexandersson, Frether Getachew Kebede, Samuel Asefa Fufa, and Dun Qiu, Pattern-Avoidance and Fuss-Catalan Numbers, J. Int. Seq. (2023) Vol. 26, Art. 23.4.2.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30 (see definition p. 26 and table p. 27).
- G. N. Raney, Functional composition patterns and power series reversion, Trans. Amer. Math. Soc., 94 (1960), pp. 441-451.
Crossrefs
Programs
-
GAP
Flat(List([1..10], n->List([1..n-1], k-> Binomial(k,n-k)*Binomial(n ,k+1)/k ))); # G. C. Greubel, Jan 17 2019
-
Magma
[[Binomial(k,n-k)*Binomial(n,k+1)/k: k in [1..n-1]]: n in [2..10]]; // G. C. Greubel, Jan 17 2019
-
Mathematica
Table[Binomial[k, n-k]*Binomial[n, k+1]/k, {n,2,10}, {k,1,n-1}]//Flatten (* G. C. Greubel, Jan 17 2019 *)
-
PARI
tabl(nn) = {for (n = 2, nn, for (k = 1, n-1, print1(binomial(k, n-k)*binomial(n, k+1)/k, ", ");); print(););} \\ Michel Marcus, Feb 04 2014
-
Sage
[[binomial(k,n-k)*binomial(n,k+1)/k for k in (1..n-1)] for n in (2..10)] # G. C. Greubel, Jan 17 2019
Formula
T(n,k) = binomial(k, n-k) * binomial(n, k+1)/k. - Michel Marcus, Feb 04 2014
From Andrew Howroyd, Jan 24 2025: (Start)
G.f.: -1 + ((1 + y*x) - sqrt(1 - 2*y*x + (y^2 - 4*y)*x^2))/(2*x*y*(1 + x)).
G.f.: -1 + (1/(x*y))*Series_Reversion(x*(1 - x)/(y - y*x + x^2)). (End)
Extensions
Corrected and extended by Michel Marcus, Feb 04 2014
Comments