A079510 Triangle T(n,k) read by rows; related to number of preorders.
1, 0, 2, 0, 3, 6, 0, 0, 20, 24, 0, 0, 15, 130, 120, 0, 0, 0, 210, 924, 720, 0, 0, 0, 105, 2380, 7308, 5040, 0, 0, 0, 0, 2520, 26432, 64224, 40320, 0, 0, 0, 0, 945, 44100, 303660, 623376, 362880, 0, 0, 0, 0, 0, 34650, 705320, 3678840, 6636960, 3628800
Offset: 1
Examples
Triangle begins: 1; 0, 2; 0, 3, 6; 0, 0, 20, 24; 0, 0, 15, 130, 120; ...
Links
- G. C. Greubel, Rows n=1..30 of triangle, flattened
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (See the array on page 29.)
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
Crossrefs
A rearrangement of the triangle in A008306. - Benoit Cloitre, Jan 27 2003
Programs
-
Mathematica
T[n_, k_]:= If[k < 1 || k > n, 0, If[n==1 && k==1, 1, n*(T[n-1, k-1] + T[n-2, k-1])]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}]//Flatten (* G. C. Greubel, Jan 17 2019 *)
-
PARI
T(n,k)=if(k<=0 || k>n, 0, if(n==1 && k==1, 1, n*(T(n-1,k-1)+T(n-2,k-1))));
Extensions
Recurrence and more terms from Michael Somos, Jan 23 2003
Offset changed to 1 by G. C. Greubel, Jan 17 2019
Comments