A079613 a(n) = F(3*2^n) where F(k) denotes the k-th Fibonacci number.
2, 8, 144, 46368, 4807526976, 51680708854858323072, 5972304273877744135569338397692020533504, 79757008057644623350300078764807923712509139103039448418553259155159833079730688
Offset: 0
Keywords
References
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete mathematics, second edition, Addison Wesley, 1994, p. 557, ex. 6.61.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10
- V. E. Hoggatt, Jr. and Marjorie Bicknell, A Reciprocal Series of Fibonacci Numbers with Subscripts 2^n k, The Fibonacci Quarterly, Vol. 14, No. 5 (1976), p. 453-455.
Programs
-
Magma
[Fibonacci(3*2^n) : n in [0..7]]; // Wesley Ivan Hurt, Apr 05 2023
-
Mathematica
Table[Fibonacci[3*2^n], {n, 0, 7}] (* Amiram Eldar, Jan 29 2022 *)
Formula
Sum_{n>=0} 1/a(n) = 5/4 - 1/phi = 0.6319660112... since Sum_{k=0..n} 1/a(k) = 5/4 - F(3*2^n-1)/F(3*2^n).
a(n) = (1/sqrt(5))*( (2 + sqrt(5))^2^n - 1/(2 + sqrt(5))^2^n ) for n >= 1. - Peter Bala, Nov 04 2013
Comments