cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079621 Matrix square of unsigned Lah triangle abs(A008297(n,k)) or A105278(n,k).

Original entry on oeis.org

1, 4, 1, 24, 12, 1, 192, 144, 24, 1, 1920, 1920, 480, 40, 1, 23040, 28800, 9600, 1200, 60, 1, 322560, 483840, 201600, 33600, 2520, 84, 1, 5160960, 9031680, 4515840, 940800, 94080, 4704, 112, 1, 92897280, 185794560, 108380160, 27095040, 3386880, 225792
Offset: 1

Views

Author

Vladeta Jovovic, Jan 29 2003

Keywords

Comments

Also the Bell transform of A002866(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016
Also the number of k-dimensional flats of the extended Shi arrangement of dimension n consisting of hyperplanes x_i - x_j = d (1 <= i < j <= n, -1 <= d <= 2). - Shuhei Tsujie, Apr 26 2019

Examples

			Triangle begins:
     1;
     4,    1;
    24,   12,   1;
   192,  144,  24,  1;
  1920, 1920, 480, 40, 1;
  ...
		

Crossrefs

Cf. A002866 (first column), A025168 (row sums).

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1, 0, 0, 0, ..) as column 0.
    BellMatrix(n -> 2^n*(n+1)!, 9); # Peter Luschny, Jan 26 2016
  • Mathematica
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[2^#*(#+1)!&, rows = 12];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)

Formula

E.g.f.: exp(x*y/(1-2*x)).
T(n, k) = n!/k!*binomial(n-1, k-1)*2^(n-k). - Vladeta Jovovic, Sep 24 2003
The n-th row polynomial equals x o (x + 2) o (x + 4) o ... o (x + 2*n), where o is the deformed Hadamard product of power series defined in Bala, section 3.1. - Peter Bala, Jan 18 2018