A079621 Matrix square of unsigned Lah triangle abs(A008297(n,k)) or A105278(n,k).
1, 4, 1, 24, 12, 1, 192, 144, 24, 1, 1920, 1920, 480, 40, 1, 23040, 28800, 9600, 1200, 60, 1, 322560, 483840, 201600, 33600, 2520, 84, 1, 5160960, 9031680, 4515840, 940800, 94080, 4704, 112, 1, 92897280, 185794560, 108380160, 27095040, 3386880, 225792
Offset: 1
Examples
Triangle begins: 1; 4, 1; 24, 12, 1; 192, 144, 24, 1; 1920, 1920, 480, 40, 1; ...
Links
- P. Bala, The white diamond product of power series.
- N. Nakashima and S. Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1, 0, 0, 0, ..) as column 0. BellMatrix(n -> 2^n*(n+1)!, 9); # Peter Luschny, Jan 26 2016
-
Mathematica
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; B = BellMatrix[2^#*(#+1)!&, rows = 12]; Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
Formula
E.g.f.: exp(x*y/(1-2*x)).
T(n, k) = n!/k!*binomial(n-1, k-1)*2^(n-k). - Vladeta Jovovic, Sep 24 2003
The n-th row polynomial equals x o (x + 2) o (x + 4) o ... o (x + 2*n), where o is the deformed Hadamard product of power series defined in Bala, section 3.1. - Peter Bala, Jan 18 2018
Comments