cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079635 Sum of (2 - p mod 4) for all prime factors p of n (with repetition).

Original entry on oeis.org

0, 0, -1, 0, 1, -1, -1, 0, -2, 1, -1, -1, 1, -1, 0, 0, 1, -2, -1, 1, -2, -1, -1, -1, 2, 1, -3, -1, 1, 0, -1, 0, -2, 1, 0, -2, 1, -1, 0, 1, 1, -2, -1, -1, -1, -1, -1, -1, -2, 2, 0, 1, 1, -3, 0, -1, -2, 1, -1, 0, 1, -1, -3, 0, 2, -2, -1, 1, -2, 0, -1, -2, 1, 1, 1, -1, -2, 0, -1, 1, -4, 1, -1, -2, 2, -1, 0, -1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 30 2003

Keywords

Comments

a(n) = {number of primes of the form 4k+1 dividing n} minus {number of primes of the form 4k+3 dividing n}, both counted with multiplicity. - Antti Karttunen, Feb 03 2016, after the formula.

Examples

			a(55) = a(5*11) = (2 - 5 mod 4)+(2 - 11 mod 4) = (2-1)+(2-3) = (1)+(-1) = 0.
		

Crossrefs

Cf. A072202 (indices of zeros), A268379 (of strictly positive terms), A268380 (of negative terms), A268381 (of nonnegative terms).
Cf. A005094 (difference when counting only distinct primes).

Programs

  • Haskell
    a079635 1 = 0
    a079635 n = sum $ map ((2 - ) . (`mod` 4)) $ a027746_row n
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Maple
    f:= proc(n) local t;
    add(t[2]*(2-(t[1] mod 4)), t=ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 05 2016
  • Mathematica
    f[n_]:=Plus@@((2-Mod[#[[1]],4])*#[[2]]&/@If[n==1,{},FactorInteger[n]]); Table[f[n],{n,100}] (* Ray Chandler, Dec 20 2011 *)
  • Scheme
    (define (A079635 n) (- (A083025 n) (A065339 n))) ;; Antti Karttunen, Feb 03 2016

Formula

a(n) = A083025(n) - A065339(n).
Other identities. For all n >= 1:
a(A267099(n)) = -a(n). - Antti Karttunen, Feb 03 2016
Totally additive with a(2) = 0, a(p) = 1 if p == 1 (mod 4), and a(p) = -1 if p == 3 (mod 4). - Amiram Eldar, Jun 17 2024

Extensions

Edited by Ray Chandler, Dec 20 2011