cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079816 Number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=1, r=5, I={1}.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 12, 20, 34, 59, 102, 175, 300, 515, 885, 1521, 2613, 4488, 7709, 13243, 22750, 39081, 67134, 115324, 198107, 340315, 584604, 1004250, 1725130, 2963480, 5090756, 8745055, 15022519, 25806135, 44330556, 76152366, 130816831
Offset: 0

Views

Author

Vladimir Baltic, Feb 19 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {1,3,4,5,6}.
a(n+1) is the number of multus bitstrings of length n with no runs of 6 ones. - Steven Finch, Mar 25 2020

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1-x-x^3-x^4-x^5-x^6) )); // G. C. Greubel, Dec 12 2023
    
  • Mathematica
    LinearRecurrence[{1,0,1,1,1,1}, {1,1,1,2,4,7}, 51] (* G. C. Greubel, Dec 12 2023 *)
  • SageMath
    def A079816_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-x-x^3-x^4-x^5-x^6) ).list()
    A079816_list(50) # G. C. Greubel, Dec 12 2023

Formula

Recurrence: a(n) = a(n-1) + a(n-3) + a(n-4) + a(n-5) + a(n-6).
G.f.: 1/(1-x-x^3-x^4-x^5-x^6).