cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079879 Median prime factor: a(1)=1 and for n>1: least prime p such that not more than floor(Omega(n)/2) prime factors are greater than p; Omega(n) is the total number of prime factors of n (A001222).

Original entry on oeis.org

1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 3, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 3, 31, 2, 3, 2, 5, 2, 37, 2, 3, 2, 41, 3, 43, 2, 3, 2, 47, 2, 7, 5, 3, 2, 53, 3, 5, 2, 3, 2, 59, 2, 61, 2, 3, 2, 5, 3, 67, 2, 3, 5, 71, 2, 73, 2, 5, 2, 7, 3, 79, 2, 3, 2, 83, 2, 5, 2, 3, 2, 89, 3, 7, 2, 3, 2, 5, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 13 2003

Keywords

Examples

			a(30)=a(2*3*5)=3; a(60)=a(2*2*3*5)=2; a(72)=a(2*2*2*3*3)=2; a(90)=a(2*3*3*5)=3; a(108)=a(2*2*3*3*3)=3; a(144)=a(2*2*2*2*3*3)=2; a(216)=a(2*2*2*3*3*3)=2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,F2,m,i;
        F:= sort(ifactors(n)[2],(i,j) -> i[1]=F2[-1] then return F[i][1] fi
        od
    end proc:
    1, seq(f(n), n=2..100); # Robert Israel, Aug 25 2015
  • Mathematica
    f[n_] := Block[{p = Flatten[Table[#1, {#2}] & @@@ FactorInteger@ n], len}, len = Length@ p; If[OddQ@ len, p[[1 + Floor[len/2]]], p[[len/2]]]]; {1}~Join~Table[f@ n, {n, 2, 96}] (* Michael De Vlieger, Aug 25 2015 *)
  • PARI
    a(n) = {if (n==1, return(1)); my(f=factor(n), v=vector(bigomega(f)), j=1); for (k=1, #f~, for (i=1, f[k,2], v[j]=f[k,1]; j++);); v[(#v+1)\2];} \\ Michel Marcus, Apr 15 2022

Formula

A020639(n) <= a(n) <= A006530(n);
a(m) = A020639(m) = A006530(m) iff m is a prime power (A000961).

Extensions

Typo fixed by Franklin T. Adams-Watters, Jul 10 2012