cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A079880 a(n) = n/mpf(n), where mpf(n) is the median prime factor of n (A079879).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 6, 1, 10, 7, 11, 1, 12, 5, 13, 9, 14, 1, 10, 1, 16, 11, 17, 7, 18, 1, 19, 13, 20, 1, 14, 1, 22, 15, 23, 1, 24, 7, 10, 17, 26, 1, 18, 11, 28, 19, 29, 1, 30, 1, 31, 21, 32, 13, 22, 1, 34, 23, 14, 1, 36, 1, 37, 15, 38, 11, 26, 1, 40, 27, 41, 1, 42
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 13 2003

Keywords

Comments

A052126(n)<=a(n)<=A032742(n);
a(m)=A032742(m)=A052126(m) iff m is a prime power (A000961).

Crossrefs

a(n)=n/A079879(n), A033676.

Programs

  • Maple
    f:= proc(n) local F, F2, m, i;
        F:= sort(ifactors(n)[2], (i, j) -> i[1]=F2[-1] then return n/F[i][1] fi
        od
    end proc:
    1, seq(f(n),n=2..100); # Robert Israel, Jan 26 2018
  • Mathematica
    mpf[n_] := Module[{fi = FactorInteger[n], ff, Om}, ff = Flatten[Table[ Table[f[[1]], {f[[2]]}], {f, fi}]]; Om = Length[ff]; If[OddQ[Om], ff[[Floor[Om/2]+1]], ff[[Om/2]]]];
    a[n_] := n/mpf[n];
    Array[a, 100] (* Jean-François Alcover, Mar 09 2019 *)

A079881 mpf(n)^Omega(n), where mpf(n) is the median prime factor of n (A079879).

Original entry on oeis.org

1, 2, 3, 4, 5, 4, 7, 8, 9, 4, 11, 8, 13, 4, 9, 16, 17, 27, 19, 8, 9, 4, 23, 16, 25, 4, 27, 8, 29, 27, 31, 32, 9, 4, 25, 16, 37, 4, 9, 16, 41, 27, 43, 8, 27, 4, 47, 32, 49, 125, 9, 8, 53, 81, 25, 16, 9, 4, 59, 16, 61, 4, 27, 64, 25, 27, 67, 8, 9, 125, 71, 32, 73, 4, 125, 8, 49, 27, 79, 32
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 13 2003

Keywords

Comments

A068794(n)<=a(n)<=A068795(n);
a(m)=m=A068794(m)=A068795(m) iff m is a prime power (A000961).

Crossrefs

a(n)=A079879(n)^A001222(n), A033676, O000004.

A361632 a(n) is the numerator of the median of the prime factors of n with repetition.

Original entry on oeis.org

2, 3, 2, 5, 5, 7, 2, 3, 7, 11, 2, 13, 9, 4, 2, 17, 3, 19, 2, 5, 13, 23, 2, 5, 15, 3, 2, 29, 3, 31, 2, 7, 19, 6, 5, 37, 21, 8, 2, 41, 3, 43, 2, 3, 25, 47, 2, 7, 5, 10, 2, 53, 3, 8, 2, 11, 31, 59, 5, 61, 33, 3, 2, 9, 3, 67, 2, 13, 5, 71, 2, 73, 39, 5, 2, 9, 3, 79
Offset: 2

Views

Author

Stefano Spezia, Mar 18 2023

Keywords

Examples

			a(12) = 2 since 12 = 2*2*3, and the median of the factors is equal to 2.
a(36) = 5 since 30 = 2*2*3*3, and the median of the factors is equal to 5/2.
		

Crossrefs

Cf. A001222, A027746, A079879, A323171, A361565, A361630 (without repetition), A361633 (denominator), A361725.

Programs

  • Mathematica
    a[n_]:=Numerator[Median[Flatten[Table[#[[1]], {#[[2]]}] & /@ FactorInteger[n]]]]; Array[a,78,2]

Formula

For p a prime, a(p^k) = p.
a(n) = numerator((A079879(n) + A361725(n))/2).

A361633 a(n) is the denominator of the median of the prime factors of n with repetition.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1
Offset: 2

Views

Author

Stefano Spezia, Mar 18 2023

Keywords

Examples

			a(12) = 1 since 12 = 2*2*3, and the median of the factors is equal to 2/1.
a(36) = 2 since 30 = 2*2*3*3, and the median of the factors is equal to 5/2.
		

Crossrefs

Cf. A001222, A027746, A079879, A323172, A361566, A361631 (without repetition), A361632 (numerator), A361725.

Programs

  • Mathematica
    a[n_]:=Denominator[Median[Flatten[ Table[#[[1]], {#[[2]]}] & /@ FactorInteger[n]]]]; Array[a,88,2]

Formula

For p a prime, a(p^k) = 1.
a(n) = denominator((A079879(n) + A361725(n))/2).

Extensions

Example corrected by Peter Munn, Aug 04 2024

A361725 a(n) is the largest of two middle prime factors of n if the number of prime divisors counted with multiplicity (A001222(n)) is even, otherwise is the middle prime factor of n.

Original entry on oeis.org

2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 2, 13, 7, 5, 2, 17, 3, 19, 2, 7, 11, 23, 2, 5, 13, 3, 2, 29, 3, 31, 2, 11, 17, 7, 3, 37, 19, 13, 2, 41, 3, 43, 2, 3, 23, 47, 2, 7, 5, 17, 2, 53, 3, 11, 2, 19, 29, 59, 3, 61, 31, 3, 2, 13, 3, 67, 2, 23, 5, 71, 2, 73, 37, 5, 2, 11, 3
Offset: 2

Views

Author

Stefano Spezia, Mar 22 2023

Keywords

Examples

			a(30) = a(2*3*5) = 3; a(60) = a(2*2*3*5) = 3; a(72) = a(2*2*2*3*3) = 2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,m;
      F:= sort(map(t -> t[1]$t[2],ifactors(n)[2]));
      m:= ceil((1+nops(F))/2);
      F[m]
    end proc:
    map(f, [$2..100]); # Robert Israel, May 19 2025
  • Mathematica
    f[n_] := Block[{p = Flatten[Table[#1, {#2}] & @@@ FactorInteger@ n], len}, len = Length@ p; If[OddQ@ len, p[[(1 + len)/2]], p[[len/2+1]]]]; Table[f@ n, {n, 2, 78}] (* After Michael De Vlieger in A079879 *)

Formula

a(n) = A027746(n, floor(A001222(n)/2) + 1).
a(n) = 2*A361632(n)/A361633(n) - A079879(n) if A001222(n) is even.
a(n) = A361632(n) if A001222(n) is odd.

A261564 a(1)=2; thereafter a(n) = mpf(1+Product_{k=1..n-1} a(k)), where mpf(n) = f-th prime factor with multiplicity of n, for f=ceiling(bigomega(n)/2).

Original entry on oeis.org

2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 25621, 10300271, 2731, 1079927141307582051252331702244209088763871
Offset: 1

Views

Author

Anders Hellström, Aug 24 2015

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = Flatten[Table[#1, {#2}] & @@@ FactorInteger@ n], len}, len = Length@ p; Which[n == 1, 1, OddQ@len, p[[1 + Floor[len/2]]], True, p[[len/2]]]]; a = {2}; Do[AppendTo[a, f[1 + Product[a[[k]], {k, 1, n - 1}]]], {n, 2, 13}] ; a (* Michael De Vlieger, Aug 25 2015 *)
  • PARI
    factorsm(n)=my(v=factor(n), f=factor(n)[, 1]~, w=[]); for(i=1, #f, for(j=1, v[i, 2], w=concat(w, f[i]))); w;
    mpf(n)=my(f=factorsm(n)); f[ceil(#f/2)]
    first(m)=my(v=vector(m)); v[1]=2; for(i=2, m, v[i]=mpf(1+prod(j=1, i-1, v[j]))); v;

Formula

a(1)=2; thereafter a(n) = A079879(1+Product_{k=1..n-1}a(k)).

Extensions

a(13) from Michael De Vlieger, Aug 25 2015
Showing 1-6 of 6 results.