cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079903 a(n) = (9n^4 - 18n^3 + 18n^2 - 9n + 2)/2.

Original entry on oeis.org

1, 28, 190, 703, 1891, 4186, 8128, 14365, 23653, 36856, 54946, 79003, 110215, 149878, 199396, 260281, 334153, 422740, 527878, 651511, 795691, 962578, 1154440, 1373653, 1622701, 1904176, 2220778, 2575315, 2970703, 3409966, 3896236, 4432753, 5022865
Offset: 1

Views

Author

N. J. A. Sloane, Feb 21 2003

Keywords

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982; p. 810.

Programs

  • Magma
    [(9*n^4 - 18*n^3 + 18*n^2 - 9*n + 2)/2 : n in [1..40]]; // Wesley Ivan Hurt, Jan 27 2017
  • Mathematica
    Table[(9n^4 + 18n^2 + 5)/32, {n, 1, 71, 2}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {1, 28, 190, 703, 1891}, 36] (* Harvey P. Dale, Jun 10 2011 *)
  • PARI
    a(n)=(((9*n-18)*n+18)*n-9)*n/2+1 \\ Charles R Greathouse IV, Jun 10 2011
    

Formula

From Harvey P. Dale, Jun 10 2011: (Start)
G.f.: (x*(x*(x+3)*(x+20)+23)+1)/(1-x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), a(0) = 1, a(1) = 28, a(2) = 190, a(3) = 703, a(4) = 1891. (End)
a(n) = (3*n^2 - 3*n + 1)*(3*n^2 - 3*n + 2)/2. - Bruno Berselli, Jan 28 2017