cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079911 Solution to the Dancing School Problem with 6 girls and n+6 boys: f(6,n).

Original entry on oeis.org

1, 7, 79, 478, 2108, 7364, 21652, 55532, 127604, 268108, 523244, 960212, 1672972, 2788724, 4475108, 6948124, 10480772, 15412412, 22158844, 31223108, 43207004, 58823332, 78908852, 104437964, 136537108, 176499884, 225802892, 286122292
Offset: 0

Views

Author

Jaap Spies, Jan 28 2003

Keywords

Comments

f(g,h) = per(B), the permanent of the (0,1)-matrix B of size g X g+h with b(i,j)=1 if and only if i <= j <= i+h. See A079908 for more information.
For fixed g, f(g,n) is polynomial in n for n >= g-2. See reference.

Crossrefs

Programs

  • Maple
    seq(n^6-9*n^5+60*n^4-225*n^3+555*n^2-774*n+484,n=4..40);
  • Mathematica
    CoefficientList[Series[-(6 x^10 - 29 x^9 + 120 x^8 - 49 x^7 + 267 x^6 + 105 x^5 + 211 x^4 + 37 x^3 + 51 x^2 + 1)/(x - 1)^7, {x, 0, 28}], x] (* Michael De Vlieger, Dec 23 2019 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,7,79,478,2108,7364,21652,55532,127604,268108,523244},40] (* Harvey P. Dale, Jul 02 2022 *)
  • PARI
    Vec(-(6*x^10 -29*x^9 +120*x^8 -49*x^7 +267*x^6 +105*x^5 +211*x^4 +37*x^3 +51*x^2 +1) / (x -1)^7 + O(x^100)) \\ Colin Barker, Jan 04 2015

Formula

a(0)=1, a(2)=7, a(3)=79, a(n)=n^6-9*n^5+60*n^4-225*n^3+555*n^3-774*n+484.
G.f.: -(6*x^10 -29*x^9 +120*x^8 -49*x^7 +267*x^6 +105*x^5 +211*x^4 +37*x^3 +51*x^2 +1) / (x -1)^7. - Colin Barker, Jan 04 2015