A079937 Greedy frac multiples of Pi^2/6: a(1)=1, Sum_{n>=1} frac(a(n)*x) = 1 at x = Pi^2/6.
1, 2, 14, 45, 107, 138, 276, 414, 1135, 2270, 6672, 12209, 18881, 180865, 361730, 542595, 723460, 2031679, 7945851, 15891702, 21805874, 29751725, 43611748, 65417622, 87223496, 362754007, 384559881, 406365755
Offset: 1
Examples
a(4) = 45 since frac(1*x) + frac(2*x) + frac(14*x) + frac(45*x) < 1, while frac(1*x) + frac(2*x) + frac(14*x) + frac(k*x) > 1 for all k > 14 and k < 45.
Extensions
a(15)-a(28) from Sean A. Irvine, Aug 30 2025
Comments