A079946 Numbers k whose binary expansion begins with two or more 1's and ends with at least one 0.
6, 12, 14, 24, 26, 28, 30, 48, 50, 52, 54, 56, 58, 60, 62, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246
Offset: 1
Links
- Yifan Xie, Table of n, a(n) for n = 1..10001 (first 1000 terms from Harvey P. Dale)
- Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
- Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
- Ralf Stephan, Some divide-and-conquer sequences ...
- Ralf Stephan, Table of generating functions
Programs
-
Maple
A079946 := n -> 2*(2^(1+A000523(n))+n);
-
Mathematica
Table[Union[FromDigits[Join[{1,1},#,{0}],2]&/@Tuples[{1,0},n]],{n,0,5}]//Flatten (* Harvey P. Dale, Jan 16 2018 *)
-
PARI
for(n=0,6, for(k=2^(n-1),2^n-1,print1((2^n+k)*2,",")))
-
PARI
for(n=1,59,print1((2^(floor(log(n)/log(2))+1)+n)*2,","))
-
PARI
a(n) = n*2 + 4<
Ruud H.G. van Tol, May 10 2024 -
Python
def A079946(n): return n+(1<
Chai Wah Wu, Jul 13 2022
Formula
a(n) = 2^floor(log_2(4*n))+2*n. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 22 2003
a(n) = (2^(floor(log_2(n))+1)+n)*2. - Klaus Brockhaus, Feb 23 2003
a(2n) = 2a(n), a(2n+1) = 2a(n) + 2 + 4[n==0]. Twice A004755. - Ralf Stephan, Oct 12 2003
Extensions
Definition clarified by N. J. A. Sloane, May 10 2024
Comments