A079948 First differences of A079000.
3, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
References
- N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
Links
- B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
- B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
- N. J. A. Sloane, Seven Staggering Sequences.
Programs
-
Mathematica
b[1] = 1; b[n_] := (k = Floor[Log[2, (n+3)/6]]; j = n - (9*2^k-3); 12*2^k - 3 + 3*j/2 + Abs[j]/2); Array[b, 106] // Differences (* Jean-François Alcover, Sep 02 2018 *)
Formula
After first two terms, a run of length 3*2^k 1's followed by a run of length 3*2^k 2's, for k = 0, 1, ...
a(n) = floor(log_2(8*(floor((n+3)/3))/3)) - floor(log_2(floor((n+3)/3))) for n>2; with a(1)=3 and a(2)=2. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 22 2003
Comments