cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A079000 a(n) is taken to be the smallest positive integer greater than a(n-1) which is consistent with the condition "n is a member of the sequence if and only if a(n) is odd".

Original entry on oeis.org

1, 4, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 23, 25, 27, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 97
Offset: 1

Views

Author

Matthew Vandermast, Feb 01 2003

Keywords

Comments

a(a(n)) = 2n + 3 for n>1.

Examples

			a(2) cannot be 2 because 2 is even; it cannot be 3 because that would require 2 to be a member of the sequence. Hence a(2)=4 and the next odd member of the sequence is the fourth member.
		

References

  • Hsien-Kuei Hwang, S Janson, TH Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf. Also Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585
  • N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.

Crossrefs

Partial sums give A080566. Differences give A079948.

Programs

  • Maple
    Digits := 50; A079000 := proc(n) local k,j; if n<=2 then n^2; else k := floor(evalf(log( (n+3)/6 )/log(2)) ); j := n-(9*2^k-3); 12*2^k-3+3*j/2 +abs(j)/2; fi; end;
    A002264 := n->floor(n/3): A079944 := n->floor(log[2](4*(n+2)/3))-floor(log[2](n+2)): A000523 := n->floor(log[2](n)): f := n->A079944(A002264(n-4)): g := n->A000523(A002264(n+2)/2): A079000 := proc(n) if n>3 then RETURN(simplify(3*n+3-3*2^g(n)+(-1)^f(n)*(9*2^g(n)-n-3))/2) else if n>0 then RETURN([1,4,6][n]) else RETURN(0) fi fi: end;
  • Mathematica
    a[1] = 1; a[n_] := (k = Floor[Log[2, (n+3)/6]]; j = n-(9*2^k - 3); 12*2^k-3 + 3*j/2 + Abs[j]/2); Table[a[n], {n, 1, 71}] (* Jean-François Alcover, May 21 2012, after Maple *)

Formula

a(1) = 1, a(2) = 4, then a(9*2^k-3+j) = 12*2^k-3+3*j/2+|j|/2 for k>=0, -3*2^k <= j <= 3*2^k. Also a(3n) = 3*b(n/3), a(3n+1) = 2*b(n)+b(n+1), a(3n+2) = b(n)+2*b(n+1) for n>=2, where b = A079905. - N. J. A. Sloane and Benoit Cloitre, Feb 20 2003
a(n+1) - 2*a(n) + a(n-1) = 1 for n = 9*2^k - 3, k>=0, = -1 for n = 2 and 3*2^k-3, k>=1 and = 0 otherwise.
a(n) = (3*n + 3 - 3*2^g(n) + (-1)^f(n)*(9*2^g(n) - n - 3))/2 for n>3, f(n) = A079944(A002264(n-4)) and g(n) = A000523(A002264(n+2)/2). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 23 2003
Also a(n) = n + 3*2^A000523(A002264(n+2)/2)*(1 - 3*A080584(n-4)) + A080584(n-4)*(n+3) for n>3, where A080584(n)=A079944(A002264(n)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 24 2003

A080586 A run of 3*2^n 1's followed by a run of 3*2^n 2's, for n=0, 1, 2, ...

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 23 2003

Keywords

Crossrefs

Equals 1 + A080584.

Programs

  • Maple
    f := (c,n)->seq(c,i=1..3*2^n); [f(1,0),f(2,0),f(1,1),f(2,1),f(1,2),f(2,2),f(1,3),f(2,3)]; f;
  • Mathematica
    Flatten[Table[{PadRight[{},3*2^n,1],PadRight[{},3*2^n,2]},{n,0,4}]] (* Harvey P. Dale, May 04 2014 *)

Formula

a(n) = ( 3 - (-1)^A079944(A002264(n)) )/2, A079944(A002264(n))=floor(log[2](4*(floor((n+6)/3))/3)) - floor(log[2](floor((n+6)/3))) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 24 2003
Also a(n) = 1+A079944(A002264(n))=floor(log[2](8*(floor((n+6)/3))/3)) - floor(log[2](floor((n+6)/3))) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 24 2003

A080038 Start with a(1)=3; apply 3 -> 343, 4 -> 3443; iterate.

Original entry on oeis.org

3, 3, 4, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4
Offset: 1

Views

Author

Matthew Vandermast, Mar 14 2003

Keywords

Comments

a(n)= A080753(n+1) - A080753(n). Sum of first n terms + 2 = A080753(n).

Examples

			3 -> 343 -> 3433443343 -> ...
		

Crossrefs

Programs

  • Mathematica
    SubstitutionSystem[{3->{3,4,3},4->{3,4,4,3}},{3},{5}][[1]] (* Harvey P. Dale, Jan 01 2024 *)

A081261 Start with a(1)=4; apply 4 -> 665, 5 -> 56665, 6 -> 566665; iterate.

Original entry on oeis.org

4, 6, 6, 5, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6
Offset: 1

Views

Author

Matthew Vandermast, Mar 14 2003

Keywords

Comments

a(n)= A081260(n) - A081260(n-1) (taking A081260(0) as equal to 0). Sum of first n terms = A081260(n).

Examples

			4 -> 665 -> 56666556666556665 -> ...
		

Crossrefs

Showing 1-4 of 4 results.