cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079971 Number of compositions (ordered partitions) of n into parts 1, 2, and 5.

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 15, 26, 44, 75, 128, 218, 372, 634, 1081, 1843, 3142, 5357, 9133, 15571, 26547, 45260, 77164, 131557, 224292, 382396, 651948, 1111508, 1895013, 3230813, 5508222, 9390983, 16010713, 27296709, 46538235, 79343166, 135272384
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Number of ways of ordered sequences of nickels, dimes and quarters that add to 5n cents.
Number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=1, r=4, I={2,3}.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix(5, (i,j)-> if i+1=j or j=1 and member(i,[1, 2, 5]) then 1 else 0 fi)^n)[1, 1]: seq(a(n), n=0..40); # Alois P. Heinz, Oct 07 2008
  • Mathematica
    LinearRecurrence[{1, 1, 0, 0, 1}, {1, 1, 2, 3, 5}, 40] (* Jean-François Alcover, Nov 11 2015 *)
  • Maxima
    a(n):=sum(sum(binomial(j,n-5*k+4*j)*binomial(k,j),j,floor((5*k-n)/4),k),k,0,n); /* Vladimir Kruchinin, Dec 15 2011 */

Formula

Recurrence: a(n) = a(n-1)+a(n-2)+a(n-5).
G.f.: 1/(1-x-x^2-x^5).
a(n) = Sum_{k=0..n} Sum_{j=floor((5*k-n)/4)..k} C(j,n-5*k+4*j)*C(k,j). - Vladimir Kruchinin, Dec 15 2011
With offset 1, the INVERT transform of (1 + x + x^4). - Gary W. Adamson, Apr 01 2017

Extensions

Entry revised by N. J. A. Sloane, Feb 23 2006