cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080018 Triangle of coefficients of polynomials P(n; x) = Permanent(M), where M=[m(i,j)] is n X n matrix defined by m(i,j)=x if -1<=i-j<=1 else m(i,j)=1.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 1, 2, 3, 1, 2, 10, 6, 5, 4, 20, 28, 44, 16, 8, 29, 104, 207, 180, 151, 36, 13, 206, 775, 1288, 1407, 830, 437, 76, 21, 1708, 6140, 10366, 10384, 7298, 3100, 1138, 152, 34, 15702, 55427, 91296, 92896, 63140, 31278, 10048, 2744, 294, 55
Offset: 0

Views

Author

Keywords

Examples

			1;
0,  1;
0,  0,  2;
0,  1,  2,  3;
1,  2, 10,  6,  5;
4, 20, 28, 44, 16, 8;
...
P(4; x) = Permanent(MATRIX([[x, x, 1, 1], [x, x, x, 1], [1, x, x, x], [1, 1, x, x]])) = 1+2*x+10*x^2+6*x^3+5*x^4.
		

References

  • J. Riordan, The enumeration of permutations with three-ply staircase restrictions, unpublished memorandum, Bell Telephone Laboratories, Murray Hill, NJ, Oct 1963. See Table 1. - N. J. A. Sloane, Aug 27 2013

Crossrefs

Row sums = A000142, first column = A001883, second column = A001884, third column = A001885, fourth column = A001886.
Main diagonal and lower diagonal give: A000045(n+1), A178523. - Alois P. Heinz, Jul 03 2013

Programs

  • Maple
    with(LinearAlgebra):
    T:= proc(n) option remember; local p;
          if n=0 then 1 else
            p:= Permanent(Matrix(n, (i,j)-> `if`(abs(i-j)<2, x, 1)));
            seq(coeff(p, x, i), i=0..n)
          fi
        end:
    seq(T(n), n=0..10);  # Alois P. Heinz, Jul 03 2013
  • Mathematica
    t[0] = {1}; t[n_] := CoefficientList[Permanent[Array[If[Abs[#1 - #2] < 2, x, 1]&, {n, n}]], x]; Table[t[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)