cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080039 a(n) = floor((1+sqrt(2))^n).

Original entry on oeis.org

1, 2, 5, 14, 33, 82, 197, 478, 1153, 2786, 6725, 16238, 39201, 94642, 228485, 551614, 1331713, 3215042, 7761797, 18738638, 45239073, 109216786, 263672645, 636562078, 1536796801, 3710155682, 8957108165, 21624372014, 52205852193
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jan 21 2003

Keywords

Comments

a(n) = P(n) - (1+(-1)^n)/2, where P(n) is the Pell sequence (A000129) with initial conditions 2, 2.
For n>0 a(n) is the maximum element in the continued fraction for P(n)*sqrt(2) where P=A000129 - Benoit Cloitre, Jun 19 2005

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-t^2+2t^3)/(1-2t-2t^2+2t^3+t^4), {t, 0, 30}], t]
    Floor[(1+Sqrt[2])^Range[0,40]] (* or *) LinearRecurrence[{2,2,-2,-1},{1,2,5,14},40] (* Harvey P. Dale, Aug 10 2021 *)
  • PARI
    t='t+O('t^50); Vec((1-t^2+2*t^3)/(1-2*t-2*t^2+2*t^3+t^4)) \\ G. C. Greubel, Jul 05 2017

Formula

G.f.: (1-t^2+2*t^3)/(1-2*t-2*t^2+2*t^3+t^4).
From Hieronymus Fischer, Jan 02 2009: (Start)
The fractional part of (1+sqrt(2))^n equals (1+sqrt(2))^(-n), if n odd. For even n, the fractional part of (1+sqrt(2))^n is equal to 1-(1+sqrt(2))^(-n).
fract((1+sqrt(2))^n) = (1/2)*(1+(-1)^n)-(-1)^n*(1+sqrt(2))^(-n) = (1/2)*(1+(-1)^n)-(1-sqrt(2))^n.
See A001622 for a general formula concerning the fractional parts of powers of numbers x>1, which satisfy x-x^(-1)=floor(x).
a(n) = (sqrt(2)+1)^n - (1/2) + (-1)^n*((sqrt(2)-1)^n - (1/2)) for n>0. (End)