cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A304291 Composite numbers k such that for all primes p dividing k, p-1 divides k-1 and p+1 divides k+1.

Original entry on oeis.org

8, 27, 32, 125, 128, 243, 343, 512, 1331, 2048, 2187, 2197, 3125, 4913, 6859, 8192, 12167, 16807, 19683, 24389, 29791, 32768, 50653, 68921, 74431, 78125, 79507, 103823, 131072, 148877, 161051, 177147, 205379, 226981, 300763, 357911, 371293, 389017, 493039, 524288
Offset: 1

Views

Author

Paolo P. Lava, May 17 2018

Keywords

Comments

Intersection of A080062 and A056729.
Mainly odd powers of a prime: A056824 is a subset of this sequence.
If the additional limitations p-2|n-2 and p+2|n+2 should be added, only 243, 19683, 78125, 1594323 would be terms of the sequence for n <= 10^7.
Terms that are not perfect powers are 31*7^4, 31^3*7^4, 71*11^6, .... - Altug Alkan, May 17 2018
It appears that this is the intersection of A002808 and A171561. - Michel Marcus, May 19 2018
From Robert Israel, May 25 2018: (Start)
If i is odd and 4|j, then 31^i*7^j is a member.
If i is odd and 6|j, then 71^i*11^j is a member.
If i is odd and 12|j, then 17^i*5^j is a member.
If i is odd and 36|j, then 53^i*5^j is a member.
If i == 9 (mod 18) and 6|j, then 13^i*37^j is a member.
If i == 9 (mod 18) and 12|j, then 29^i*53^j is a member.
If i == 18 (mod 36), j == 3 (mod 6) and k == 2 (mod 4), then 5^i*17^j*53^k is a member.
(End)
Composite numbers k such that for all primes p dividing k, p+1 divides k-1 and p-1 divides k+1 are the union of 2^2j and 3^2j, with j>0. - Paolo P. Lava, May 16 2019

Examples

			Prime factors of 74431 are 7 and 31 and (74431-1)/(7-1) = 12405, (74431-1)/(31-1) = 2481, (74431+1)/(7+1) = 9304, (74431+1)/(31+1) = 2326.
		

Crossrefs

Programs

  • Magma
    sol:=[]; m:=1; p:=[]; for u in [1..600000] do if not IsPrime(u) then p:=PrimeDivisors(u);  s:=0; for i in [1..#p] do if IsIntegral((u-1)/(p[i]-1)) and  IsIntegral((u+1)/(p[i]+1)) then  s:=s+1; end if; if s eq #p then sol[m]:=u; m:=m+1; end if; end for; end if; end for; sol; // Marius A. Burtea, May 16 2019
  • Maple
    with(numtheory): P:=proc(q) local a,b,k,n,ok;
    for n from 2 to q do if not isprime(n) then a:=factorset(n); ok:=1;
    for k from 1 to nops(a) do if frac((n-1)/(a[k]-1))>0 or frac((n+1)/(a[k]+1))>0 then ok:=0; break; fi; od;
    if ok=1 then print(n); fi; fi; od; end: P(10^6);
  • Mathematica
    Select[Range[4, 2^19], Function[k, And[CompositeQ@ k, AllTrue[FactorInteger[k][[All, 1]], And[Mod[k - 1, # - 1] == 0, Mod[k + 1, # + 1] == 0] &]]]] (* Michael De Vlieger, May 22 2018 *)
  • PARI
    lista(nn) = {forcomposite(c=1, nn, my(f = factor(c)); ok = 1; for (k=1, #f~, my(p = f[k,1]); if (((c-1) % (p-1)) || ((c+1) % (p+1)), ok = 0; break);); if (ok, print1(c, ", ")););} \\ Michel Marcus, May 19 2018
    

A079543 Numbers k such that k has at least two distinct prime factors and if a prime p divides k then (p-1) | (k-1) and (p+1) | (k+1).

Original entry on oeis.org

74431, 71528191, 125780831, 178708831, 4150390625, 68738591551, 171739186591, 429079903231, 634061169071
Offset: 1

Views

Author

Don Reble, Jan 22 2003

Keywords

Examples

			a(1) = 74431 = 7^4 * 31 because 6 and 30 divide 74430 and 8 and 32 divide 74432.
		

Crossrefs

Intersection of A056729 and A080062, minus A001597.

Programs

  • Mathematica
    Do[ f = Transpose[ FactorInteger[n]][[1]]; If[ Length[f] > 1 && Union[ Mod[n - 1, f - 1]] == {0} && Union[ Mod[n + 1, f + 1]] == {0}, Print[n]], {n, 6, 10^10}]

Extensions

a(6)-a(7) from Donovan Johnson, Apr 09 2010
a(8)-a(9) from Donovan Johnson, Jan 21 2013

A272600 Composites k such that p-1 divides k-1 for each prime divisor of k-1.

Original entry on oeis.org

9, 21, 25, 33, 49, 55, 65, 81, 85, 121, 129, 145, 161, 169, 201, 217, 221, 253, 273, 289, 295, 301, 321, 325, 343, 361, 385, 441, 469, 481, 501, 505, 513, 545, 589, 625, 649, 685, 721, 781, 801, 817, 841, 865, 901, 961, 973, 1001, 1025, 1027, 1081, 1089, 1101, 1135, 1177, 1261, 1281, 1333, 1345, 1369, 1405, 1441, 1501
Offset: 1

Views

Author

Joerg Arndt, May 16 2016

Keywords

Comments

Composites not in A272601.

Crossrefs

Cf. A080062 (composite n such that p-1 divides n-1 for each prime divisor of n).

Programs

  • Mathematica
    pdkQ[n_]:=Module[{p=FactorInteger[n-1][[;;,1]]-1},AllTrue[(n-1)/p,IntegerQ]]; Select[Range[ 1550],CompositeQ[#]&&pdkQ[#]&] (* Harvey P. Dale, Feb 26 2024 *)
  • PARI
    forcomposite(n=4, 10^4, my(q=1, f=factor(n-1)[,1]); for(j=1, #f, if((n-1)%(f[j]-1), q=0; break)); if(q, print1(n,", ") ) );
    
  • PARI
    is(n)=my(f=factor(n-1)[,1]); for(i=1,#f, if((n-1)%(f[i]-1), return(0))); !isprime(n) && n>1 \\ Charles R Greathouse IV, May 16 2016
Showing 1-3 of 3 results.