A078902
Generalized Fermat primes of the form (k+1)^2^m + k^2^m, with m>1.
Original entry on oeis.org
17, 97, 257, 337, 881, 3697, 10657, 16561, 49297, 65537, 66977, 89041, 149057, 847601, 988417, 1146097, 1972097, 2070241, 2522257, 2836961, 3553777, 3959297, 4398577, 5385761, 7166897, 11073217, 17653681, 32530177, 41532497, 44048497
Offset: 1
A080134
Conjectured number of generalized Fermat primes of the form (n+1)^2^k + n^2^k, with k>=0.
Original entry on oeis.org
5, 3, 3, 2, 4, 3, 2, 3, 3, 1, 1, 3, 1, 4, 1, 1
Offset: 1
a(1) = 5 because there are five known Fermat primes: 3, 5, 17, 257, 65537.
-
lst={}; Do[prms=0; Do[If[PrimeQ[(n+1)^2^k+n^2^k], prms++ ], {k, 0, 16}]; AppendTo[lst, prms], {n, 16}]; lst
A080133
Conjectured number of generalized Fermat primes of the form (n+1)^2^k + n^2^k, with k>0.
Original entry on oeis.org
4, 2, 2, 2, 3, 2, 2, 2, 2, 1, 0, 3, 1, 3, 0, 1
Offset: 1
a(1) = 4 because there are four known Fermat primes (with k>0): 5, 17, 257, 65537.
-
lst={}; Do[prms=0; Do[If[PrimeQ[(n+1)^2^k+n^2^k], prms++ ], {k, 1, 16}]; AppendTo[lst, prms], {n, 16}]; lst
Original entry on oeis.org
17, 114, 371, 708, 1589, 5286, 15943, 32504, 81801, 147338, 214315, 303356, 452413, 1300014, 2288431, 3434528, 5406625, 7476866, 9999123, 12836084, 16389861, 20349158, 24747735, 30133496, 37300393, 48373610, 66027291, 98557468
Offset: 1
a(29) = 17 + 97 + 257 + 337 + 881 + 3697 + 10657 + 16561 + 49297 + 65537 + 66977 + 89041 + 149057 + 847601 + 988417 + 1146097 + 1972097 + 2070241 + 2522257 + 2836961 + 3553777 + 3959297 + 4398577 + 5385761 + 7166897 + 11073217 + 17653681 + 32530177 + 41532497 + 44048497.
Showing 1-4 of 4 results.
Comments