cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A108690 Square roots of the terms in A080160.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 18, 21, 24, 27, 30, 33, 36, 45, 48, 51, 54, 57, 60, 63, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99, 102, 105, 108, 111, 114, 117, 126, 129, 132, 135, 138, 141, 144, 153, 154, 155, 156, 157, 158, 159, 160
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2005

Keywords

Crossrefs

Cf. A080160.

Programs

  • Maple
    b:=n->sum(convert(((10^(n+1)-1)/9)^2,base,10)[j],j=1..2*n+1): a:=proc(n) if type(sqrt(b(n)), integer)=true then sqrt(b(n)) else fi end:seq(a(n),n=0..2000); # Emeric Deutsch, Jun 19 2005

Extensions

More terms from Emeric Deutsch, Jun 19 2005

A080151 Let m = Wonderful Demlo number A002477(n); a(n) = sum of digits of m.

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 64, 81, 82, 85, 90, 97, 106, 117, 130, 145, 162, 163, 166, 171, 178, 187, 198, 211, 226, 243, 244, 247, 252, 259, 268, 279, 292, 307, 324, 325, 328, 333, 340, 349, 360, 373, 388, 405, 406, 409, 414, 421, 430, 441, 454, 469, 486, 487
Offset: 1

Views

Author

Eric W. Weisstein, Jan 31 2003

Keywords

Comments

Record values in A003132. - Reinhard Zumkeller, Jul 10 2011

Crossrefs

Programs

  • Haskell
    a n=(div n 9)*81+(mod n 9)^2
              A080151=map a [1..] \\ Chernin Nadav, Mar 06 2014
    
  • Maple
    f := n -> 9*n - 81*frac(1/9*n) + 81*frac(1/9*n)^2:
    map(f, [$1..100]); # Robert Israel, Aug 05 2019
  • Mathematica
    (* by direct counting *)
    Repunit[n_] := (-1 + 10^n)/9; A080151[n_]:=Plus @@ IntegerDigits[Repunit[n]^2];
    (* by the formula *)
    A080151[n_] := (9^2)*(n/9 - FractionalPart[n/9] + FractionalPart[n/9]^2)
    (* or alternatively *)
    A080151[n_] := 81*(Floor[n/9]+ FractionalPart[n/9]^2) (* Enrique Pérez Herrero, Nov 22 2009 *)
  • PARI
    vector(100, n, (n\9)*81+(n%9)^2) \\ Colin Barker, Mar 05 2014

Formula

a(n) = A007953(A002477(n)).
a(n) = sqrt( A080150(n) ).
a(n) = (9^2)*(n/9 - {n/9} + {n/9}^2) = 81*(floor(n/9) + {n/9}^2), where the symbol {n} means fractional part of n. - Enrique Pérez Herrero, Nov 22 2009
a(n) = A003132(A051885(n)). - Reinhard Zumkeller, Jul 10 2011
a(9*n + k) = 81*n + k^2, with k in range 0 to 9. - Enrique Pérez Herrero, Nov 05 2022
Empirical g.f.: x*(17*x^8 + 15*x^7 + 13*x^6 + 11*x^5 + 9*x^4 + 7*x^3 + 5*x^2 + 3*x + 1) / ((x-1)^2*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Mar 05 2014
Empirical g.f. confirmed. - Robert Israel, Aug 05 2019

A080161 Indices of Wonderful Demlo numbers A002477 whose digit sums are squares.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 36, 51, 66, 81, 102, 123, 144, 225, 258, 291, 324, 363, 402, 441, 576, 593, 610, 627, 644, 661, 678, 695, 712, 729, 748, 767, 786, 805, 824, 843, 862, 881, 900, 1089, 1158, 1227, 1296, 1371, 1446, 1521, 1764, 1851, 1938, 2025
Offset: 1

Views

Author

Eric W. Weisstein, Jan 31 2003

Keywords

Comments

The numbers 9*n^2 (A016766), with n > 0, are in this sequence. - Enrique Pérez Herrero, Sep 26 2020

Crossrefs

Programs

  • Mathematica
    A080151[n_] := (9^2)*(n/9 - FractionalPart[n/9] + FractionalPart[n/9]^2)
    Select[Range[10000], IntegerQ[Sqrt[A080151[#]]] &]
    (* Enrique Pérez Herrero, Sep 26 2020 *)
  • PARI
    for(k=1,10^5,issquare((k\9)*81+(k%9)^2)&&print1(k,", ")) \\ Jeppe Stig Nielsen, May 27 2023

A080162 Wonderful Demlo numbers A002477 whose digit sums are squares.

Original entry on oeis.org

1, 121, 12321, 1234321, 123454321, 12345654321, 1234567654321, 123456787654321, 12345678987654321, 12345679012345679012345679012345678987654320987654320987654320987654321
Offset: 1

Views

Author

Eric W. Weisstein, Jan 31 2003

Keywords

Comments

The next term (a(11)) has 101 digits. - Harvey P. Dale, Jun 16 2025

Crossrefs

Programs

  • Mathematica
    Select[LinearRecurrence[{111,-1110,1000},{1,121,12321},40],IntegerQ[Sqrt[Total[IntegerDigits[#]]]]&] (* Harvey P. Dale, Jun 16 2025 *)
  • PARI
    for(k=1,100,my(d=((10^k-1)/9)^2); issquare(sumdigits(d)) && print1(d,", ")) \\ Jeppe Stig Nielsen, May 27 2023

A081648 Integers congruent to 0, 1, 4, 9, 16, 25, 36, 49 or 64 (mod 81) which are not squares.

Original entry on oeis.org

82, 85, 90, 97, 106, 117, 130, 145, 162, 163, 166, 171, 178, 187, 198, 211, 226, 243, 244, 247, 252, 259, 268, 279, 292, 307, 325, 328, 333, 340, 349, 360, 373, 388, 405, 406, 409, 414, 421, 430, 454, 469, 486, 487, 490, 495, 502, 511, 522, 535, 550, 567
Offset: 1

Views

Author

Robert G. Wilson v, Mar 26 2003

Keywords

References

  • Mark A. Herkommer, Number Theory, A Programmer's Guide, McGraw-Hill, New York, 1999, page 315.

Crossrefs

Programs

  • Mathematica
    Select[ Range[567], (Mod[ #, 81] == 0 || Mod[ #, 81] == 1 || Mod[ #, 81] == 4 || Mod[ #, 81] == 9 || Mod[ #, 81] == 16 || Mod[ #, 81] == 25 || Mod[ #, 81] == 36 || Mod[ #, 81] == 49 || Mod[ #, 81] == 64) && !IntegerQ[ Sqrt[ # ]] & ]
    Select[Range[600],IntegerQ[Sqrt[Mod[#,81]]]&&!IntegerQ[Sqrt[#]]&] (* Harvey P. Dale, May 13 2018 *)
Showing 1-5 of 5 results.