cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080195 11-smooth numbers which are not 7-smooth.

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 154, 165, 176, 198, 220, 231, 242, 264, 275, 297, 308, 330, 352, 363, 385, 396, 440, 462, 484, 495, 528, 539, 550, 594, 605, 616, 660, 693, 704, 726, 770, 792, 825, 847, 880, 891, 924, 968, 990, 1056, 1078, 1089
Offset: 1

Views

Author

Klaus Brockhaus, Feb 10 2003

Keywords

Comments

Numbers of the form 2^r*3^s*5^t*7^u*11^v with r, s, t, u >= 0, v > 0.

Examples

			33 = 3*11 is a term but 35 = 5*7 is not.
		

Crossrefs

Programs

  • Maple
    N:= 10^6; # to get all terms <= N
    A:= NULL;
    for v from 1 to floor(log[11](N)) do
       V:= 11^v;
       for u from 0 to floor(log[7](N/V)) do
          U:= 7^u*V;
          for t from 0 to floor(log[5](N/U)) do
            T:= 5^t*U;
            for s from 0 to floor(log[3](N/T)) do
              S:= 3^s*T;
              for r from 0 to floor(log[2](N/S)) do
                 A:= A, 2^r*S
              od
             od
           od
        od
    od:
    {A}; # Robert Israel, May 28 2014
  • Mathematica
    Select[Range[1000], FactorInteger[#][[-1, 1]] == 11 &] (* Amiram Eldar, Nov 10 2020 *)
  • PARI
    {m=1100; z=[]; for(r=0,floor(log(m)/log(2)),a=2^r; for(s=0,floor(log(m/a)/log(3)),b=a*3^s; for(t=0, floor(log(m/b)/log(5)),c=b*5^t; for(u=0,floor(log(m/c)/log(7)),d=c*7^u; for(v=1,floor(log(m/d)/log(11)), z=concat(z,d*11^v)))))); z=vecsort(z); for(i=1,length(z),print1(z[i],","))}
    
  • Python
    from sympy import integer_log, prevprime
    def A080195(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        def f(x): return n+x-g(x,11)
        return 11*bisection(f,n,n) # Chai Wah Wu, Oct 22 2024

Formula

a(n) = 11 * A051038(n). - David A. Corneth, May 27 2017
Sum_{n>=1} 1/a(n) = 7/16. - Amiram Eldar, Nov 10 2020