A080208 a(n) is the least k such that the generalized Fermat number (k+1)^(2^n) + k^(2^n) is prime.
1, 1, 1, 1, 1, 8, 95, 31, 85, 59, 1078, 754, 311, 3508, 1828, 49957, 22844
Offset: 0
Examples
a(5) = 8 because (k+1)^32 + k^32 is prime for k = 8 and composite for k < 8.
Links
- T. D. Noe, Table of generalized Fermat primes of the form (k+1)^2^m + k^2^m
- Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
- Eric Weisstein's World of Mathematics, Generalized Fermat Number
Formula
a(n) = A253633(n) - 1.
Extensions
a(14)-a(15) from Jeppe Stig Nielsen, Nov 27 2020
a(16) by Kellen Shenton communicated by Jeppe Stig Nielsen, May 19 2023
Comments