A078902
Generalized Fermat primes of the form (k+1)^2^m + k^2^m, with m>1.
Original entry on oeis.org
17, 97, 257, 337, 881, 3697, 10657, 16561, 49297, 65537, 66977, 89041, 149057, 847601, 988417, 1146097, 1972097, 2070241, 2522257, 2836961, 3553777, 3959297, 4398577, 5385761, 7166897, 11073217, 17653681, 32530177, 41532497, 44048497
Offset: 1
A253633
a(n) is the least positive integer b such that b^(2^n) + (b-1)^(2^n) is prime.
Original entry on oeis.org
2, 2, 2, 2, 2, 9, 96, 32, 86, 60, 1079, 755, 312, 3509, 1829, 49958, 22845
Offset: 0
For n = 5, 2^5 = 32 is the exponent. The numbers 1^32 + 0^32, 2^32 + 1^32, ..., 8^32 + 7^32 are not prime, but 9^32 + 8^32 is prime, so a(5) = 9. - _Michael B. Porter_, Mar 28 2018
A122900
Minimum prime of the form n^k + (n+1)^k for k>1, or 0 if no such prime exists.
Original entry on oeis.org
5, 13, 337, 41, 61, 3697, 113, 10657, 181, 2211377674535255285545615254209921
Offset: 1
a(1) = 5 because 1^2 + 2^2 = 5 is prime.
a(2) = 13 because 2^2 + 3^2 = 13 is prime.
a(3) = 337 because 3^4 + 4^4 = 337 is prime but 3^3 + 4^3 = 91 and 3^2 + 4^2 = 25 are composite.
A122902
First occurrence of exponent n in A080121 corresponding to the minimum prime of the form (k^(2^n) + (k+1)^(2^n)) = A122900(k).
Original entry on oeis.org
1, 3, 23, 21, 10, 95, 255, 86, 59
Offset: 1
A080121 begins with 1,1,2,1,1,2,1,2,1,5,?,1,2,1,?,2,1,?,1,?,4,1,3,1,..., where the unknown terms (denoted with ?) are at least 10. So a(1) = 1, a(2) = 3, a(3) = 23, a(4) = 21, a(5) = 10.
Original entry on oeis.org
17, 114, 371, 708, 1589, 5286, 15943, 32504, 81801, 147338, 214315, 303356, 452413, 1300014, 2288431, 3434528, 5406625, 7476866, 9999123, 12836084, 16389861, 20349158, 24747735, 30133496, 37300393, 48373610, 66027291, 98557468
Offset: 1
a(29) = 17 + 97 + 257 + 337 + 881 + 3697 + 10657 + 16561 + 49297 + 65537 + 66977 + 89041 + 149057 + 847601 + 988417 + 1146097 + 1972097 + 2070241 + 2522257 + 2836961 + 3553777 + 3959297 + 4398577 + 5385761 + 7166897 + 11073217 + 17653681 + 32530177 + 41532497 + 44048497.
Showing 1-5 of 5 results.
Comments