cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A122902 First occurrence of exponent n in A080121 corresponding to the minimum prime of the form (k^(2^n) + (k+1)^(2^n)) = A122900(k).

Original entry on oeis.org

1, 3, 23, 21, 10, 95, 255, 86, 59
Offset: 1

Views

Author

Alexander Adamchuk, Sep 18 2006, Oct 01 2006

Keywords

Comments

Minimum primes of the form n^(2^m) + (n+1)^(2^m) are listed in A122900. The exponents m are listed in A080121.
a(10)-a(13)>1000, a(14)-a(16)>100.

Examples

			A080121 begins with 1,1,2,1,1,2,1,2,1,5,?,1,2,1,?,2,1,?,1,?,4,1,3,1,..., where the unknown terms (denoted with ?) are at least 10. So a(1) = 1, a(2) = 3, a(3) = 23, a(4) = 21, a(5) = 10.
		

Crossrefs

Extensions

Edited by Max Alekseyev, Sep 09 2020

A080121 a(n) is the smallest k > 0 such that n^2^k + (n+1)^2^k is prime, or -1 if no such k exists.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 2, 1, 5
Offset: 1

Views

Author

T. D. Noe, Jan 29 2003

Keywords

Comments

This sequence is the base-2 logarithm of A077659. It is known that a(11) > 22. Is it possible that 11^2^k + 12^2^k is composite for all k > 0?
The corresponding primes are listed in A122900. Currently a(n) is unknown for n in {11,15,18,20,28,44,46,49,51,52,53,55,57,58,61,62,64,71,73,77,81,83,91,92,94,...}. All n < 100 and 0 < k < 10 are checked. The first occurrence of each exponent k is listed in A122902. - Alexander Adamchuk, Sep 18 2006

Crossrefs

Formula

If A058064(n) > 0, then a(n) = A058064(n). - Max Alekseyev, Sep 10 2020

Extensions

Edited by Max Alekseyev, Sep 09 2020

A253242 Least k>=0 such that n^(2^k)+1 is prime (for even n), or (n^(2^k)+1)/2 is prime (for odd n); -1 if no such k exists.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, -1, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 2, 1, 0, 1, -1, 0, 1, 0
Offset: 2

Views

Author

Eric Chen, Apr 19 2015

Keywords

Comments

Least k such that the generalized Fermat number in base n (GFN(k,n)) is prime.
a(n) = -1 if n is in A070265 (perfect powers with an odd exponent).
a(n) is currently unknown for n = {31, 38, 50, 55, 62, 63, 67, 68, 77, 83, 86, 89, 91, 92, 97, 98, 99, 104, 107, 109, 122, 123, 127, 135, 137, ...}
Corresponding primes are {3, 2, 5, 3, 7, 1201, 0, 5, 11, 61, 13, 7, 197, 113, 17, 41761, 19, 181, 401, 11, 23, 139921, 577, 13, 677, 0, 29, 421, 31, ...}. (use 0 if a(n) = -1)
All 2 <= n <= 1500 and 0 <= k <= 14 are checked, the first occurrence of k (start with k = 0) in a(n) are {2, 11, 7, 43, 41, 75, 274, 234, 331, 1342, 824, ...}.

Examples

			a(7) = 2 since (7^(2^0)+1)/2 and (7^(2^1)+1)/2 are not primes, but (7^(2^2)+1)/2 = 1201 is prime.
a(14) = 1 since 14^(2^0)+1 is not prime, but 14^(2^1)+1 = 197 is prime.
		

Crossrefs

Programs

  • Mathematica
    Table[k=0; While[p=If[EvenQ[n], (2n)^(2^k)+1, ((2n)^(2^k)+1)/2]; k<12 && !PrimeQ[p], k=k+1]; If[k==12, -1, k], {n, 2, 1500}]
  • PARI
    f(n) = for(k=0, 11, if(ispseudoprime(n^(2^k)+1), return(k))); -1
    g(n) = for(k=0, 11, if(ispseudoprime((n^(2^k)+1)/2), return(k))); -1
    a(n) = if(n%2==0, f(n), g(n))
    
  • PARI
    f(n,k)=if(n%2, (n^(2^k)+1)/2, n^(2^k)+1)
    a(n)=if(ispower(-n), -1, my(k); while(!ispseudoprime(f(n,k)), k++); k) \\ Charles R Greathouse IV, Apr 20 2015

Formula

a(2n) = A228101(n) = log_2(A079706(n)).
a(A006093(n)) = 0, a(A076274(n)) = 0, a(A070265(n)) = -1.
Showing 1-3 of 3 results.