A080226 Number of deficient divisors of n.
1, 2, 2, 3, 2, 3, 2, 4, 3, 4, 2, 4, 2, 4, 4, 5, 2, 4, 2, 5, 4, 4, 2, 5, 3, 4, 4, 5, 2, 6, 2, 6, 4, 4, 4, 5, 2, 4, 4, 6, 2, 6, 2, 6, 6, 4, 2, 6, 3, 6, 4, 6, 2, 5, 4, 6, 4, 4, 2, 7, 2, 4, 6, 7, 4, 6, 2, 6, 4, 7, 2, 6, 2, 4, 6, 6, 4, 6, 2, 7, 5, 4, 2, 7, 4, 4, 4, 7, 2, 8, 4, 6, 4, 4, 4, 7, 2, 6, 6, 7, 2, 6, 2, 7, 8
Offset: 1
Keywords
Examples
All 4 divisors of n=21 are deficient: 1=A005100(1), 3=A005100(3), 7=A005100(6) and 21=A005100(17), therefore a(21)=4.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
- Eric Weisstein's World of Mathematics, Deficient Number.
Programs
-
Mathematica
a[n_] := Sum[If[DivisorSigma[1, d] < 2d, 1, 0], {d, Divisors[n]}]; Array[a, 105] (* Jean-François Alcover, Dec 02 2021 *)
-
PARI
A080226(n) = sumdiv(n, d, (sigma(d)<(2*d))); \\ Antti Karttunen, Nov 14 2017
Comments