cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080253 a(n) is the number of elements in the Coxeter complex of type B_n (or C_n).

Original entry on oeis.org

1, 3, 17, 147, 1697, 24483, 423857, 8560947, 197613377, 5131725123, 148070287697, 4699645934547, 162723741209057, 6103779096411363, 246564971326084337, 10671541841672056947, 492664975795819140737, 24166020791610523843203
Offset: 0

Views

Author

Paul Boddington and Tim Honeywill, Feb 10 2003

Keywords

Comments

There is a nice geometric interpretation. Let V be a Euclidean space containing a root system of type B_n. We can decompose V into a disjoint union of 'cells', a cell being simply a maximal connected subset C of V with the property that if C has nonempty intersection with the orthogonal complement of some root a, then C lies entirely within the orthogonal complement of a. a(n) is then the number of cells.
For example, if n=2 then we can take V=R^2 and the roots to be (1,0), (0,1), (1,1), (-1, -1) and their negatives. The 17 cells are as follows: the set containing the origin O; the eight "open" halflines radiating from O and containing a root (but not O); the eight connected components of V minus the union of the nine cells already described. The corresponding sequences for types A,D are A000670, A080254 respectively.
Also number of signed orders.

Examples

			a(2)=17 as follows. Let (W,S) be a Coxeter system of type B_2. By definition the elements of the associated complex are right cosets of "special parabolic subgroups". These are simply the subgroups generated by subsets of S. In our case they have orders 1,2,2,8 and hence have 8,4,4,1 cosets respectively, giving a total of 17.
		

References

  • Kenneth S. Brown, Buildings, Springer-Verlag, 1989.

Crossrefs

Programs

  • Maple
    A080253 := proc(n) option remember; local k; if n <1 then 1 else 1 + add(2^r*binomial(n,r)*A080253(n-r),r=1..n); fi; end; seq(A080253(n),n=0..30); # Detlef Pauly
  • Mathematica
    t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[c[n], {n, 0, 100}] (* Emanuele Munarini, Oct 04 2012 *)
    CoefficientList[Series[E^x/(2-E^(2*x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 07 2015 *)
    Round@Table[(-1)^(n + 1) (PolyLog[-n, Sqrt[2]] - PolyLog[-n, -Sqrt[2]])/(2 Sqrt[2]), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
    makelist(c(n),n,0,40); // Emanuele Munarini, Oct 04 2012
    
  • Sage
    def A080253(n):
        return add(A060187(n, k) << (n-k) for k in (0..n))
    [A080253(n) for n in (0..17)]  # Peter Luschny, Apr 26 2013

Formula

a(n) = 1 + Sum_{r=1..n} 2^r *binomial(n, r) *a(n-r).
E.g.f.: exp(x)/(2-exp(2*x)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 14 2003
a(n) = Sum_{t=0..n} binomial(n, t)*2^(n-t)*A000670(n-t). Fishburn 2001, p. 57.
a(n) = Sum_{k=0..n} Stirling2(n, k)*k!*A001333(k+1). - Vladeta Jovovic, Sep 28 2003
2*a(n) = Sum_{k>=0} (2*k+1)^n/2^k = 2^n*LerchPhi(1/2,-n,1/2). - Gerson Washiski Barbosa, May 11 2009, Dec 12 2010
An approximation formula can be derived from the latter, a(n) ~ (n!/(2*sqrt(2)))*(2/log(2))^(n+1), with relative errors approaching asymptotically zero as n increases. - Gerson Washiski Barbosa, Jun 26 2009
Half the row sums of triangle A154695. - Gerson Washiski Barbosa, Jun 26 2009
G.f.: 1 + x/G(0) where G(k) = 1 - x*3*(2*k+1) + x^2*(k+1)*(k+1)*(1-3^2)/G(k+1); (continued fraction due to Stieltjes). - Sergei N. Gladkovskii, Jan 11 2013
a(n) = Sum_{k = 0..n} A060187(n, k)*2^(n-k). - Peter Luschny, Apr 26 2013
G.f.: 1/Q(0), where Q(k) = 1 - 3*x*(2*k+1) - 8*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 28 2013
a(n) = log(2) * Integral_{x = 0..oo} (2*floor(x) + 1)^n * 2^(-x) dx. - Peter Bala, Feb 06 2015
From Vladimir Reshetnikov, Oct 31 2015: (Start)
a(n) = (-1)^(n+1)*(Li_{-n}(sqrt(2)) - Li_{-n}(-sqrt(2)))/(2*sqrt(2)), where Li_n(x) is the polylogarithm.
Li_{-n}(sqrt(2)) = (-1)^(n+1)*(2*A216794(n) + a(n)*sqrt(2)).
(End)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 14 2003