cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080267 a(n) = Sum_{d divides n} d*2^(n-n/d).

Original entry on oeis.org

1, 5, 13, 41, 81, 257, 449, 1313, 2497, 6465, 11265, 33665, 53249, 143617, 269313, 672257, 1114113, 3159041, 4980737, 13568001, 23904257, 57675777, 96468993, 275980289, 424673281, 1090535425, 1963720705, 4823482369, 7784628225
Offset: 1

Views

Author

Vladeta Jovovic, Feb 11 2003

Keywords

Crossrefs

Programs

  • Maple
    oo := 40; s1 := add( k*2^(k-1)*x^k/(1-2^(k-1)*x^k),k=1..oo): s2 := series(s1,x,oo-1): s3 := seriestolist(%): A080267 := n->s3[n+1];
  • Mathematica
    a[n_] := Sum[d*2^(n-n/d), {d, Divisors[n]}]; Array[a, 29] (* Jean-François Alcover, Mar 20 2014 *)
  • PARI
    a(n) = sumdiv(n, d, d*2^(n-n/d)); \\ Michel Marcus, Mar 20 2014
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(2*x)^k)^2)) \\ Seiichi Manyama, Dec 20 2022

Formula

G.f.: Sum_{k>=1} k*2^(k-1)*x^k/(1 - 2^(k-1)*x^k). - N. J. A. Sloane, Jun 04 2003
G.f.: Sum_{k>=1} x^k/(1 - (2 * x)^k)^2. - Seiichi Manyama, Dec 20 2022