A080364 Composite numbers whose least prime factor appears with multiplicity 1.
6, 10, 14, 15, 18, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 50, 51, 54, 55, 57, 58, 62, 65, 66, 69, 70, 74, 75, 77, 78, 82, 85, 86, 87, 90, 91, 93, 94, 95, 98, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 126, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146
Offset: 1
Examples
50 = 2^1 * 5^2; least prime factor is 2, whose exponent is 1, so 50 is a term.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
mi[x_] := Part[Flatten[FactorInteger[x]], 1] k=0; Do[s=mi[n]; If[Equal[GCD[s, n/s], 1]&&!PrimeQ[n], Print[n]], {n, 2, 256}] Select[Range[150],CompositeQ[#]&&FactorInteger[#][[1,2]]==1&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 23 2021 *)
-
PARI
is(n,f=factor(n))=n>1 && f[1,2]==1 \\ Charles R Greathouse IV, Jan 09 2022
-
PARI
is(n)=forprime(p=2,97, if(n%p==0, return(n%p^2>0))); !ispower(n) && factor(n)[1,2]==1 \\ Charles R Greathouse IV, Jan 09 2022
Extensions
Edited by Jon E. Schoenfield, Jul 10 2018
Comments