A080371 a(n) is the smallest x such that the quotient d(x+1)/d(x) equals n, where d = A000005.
2, 1, 11, 23, 47, 59, 191, 167, 179, 239, 5119, 359, 20479, 2111, 719, 839, 983039, 1259, 786431, 3023, 2879, 15359, 62914559, 3359, 22031, 266239, 6299, 6719, 13690208255, 5039, 22548578303, 7559, 156671, 6881279, 25919, 10079, 1168231104511, 5505023, 479231, 21839
Offset: 1
Keywords
Examples
n = 49: a(49) = 233279 = m, d(m+1) = 98, d(m) = 2, quotient = 49.
Links
- David A. Corneth, Table of n, a(n) for n = 1..196
- Donovan Johnson, All 435 terms <= 10^12
Programs
-
Mathematica
t = Table[ 0, {50}]; Do[ s = DivisorSigma[0, n+1] / DivisorSigma[0, n]; If[ s < 51 && t[[s]] == 0, t[[s]] = n], {n, 1, 10^8}]; t
-
PARI
{a(n) = my(k=1); while(numdiv(k+1)!=n*numdiv(k), k++); k} \\ Seiichi Manyama, Jan 17 2021
Formula
a(n) = Min_{x : d[x+1]/d[x] = n}.
a(n) = A086551(n) - 1. - Hugo Pfoertner, Jan 26 2021
Extensions
More terms from Robert G. Wilson v, Feb 27 2003
a(29) and a(31) from Donovan Johnson, Dec 26 2012
More terms from David A. Corneth, Jan 27 2021
Comments