A080425 Period 3: repeat [0, 2, 1].
0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Programs
-
Haskell
a080425 = (`mod` 3) . (3 -) . (`mod` 3) a080425_list = cycle [0, 2, 1] -- Reinhard Zumkeller, Feb 22 2013
-
Magma
[-n mod 3 : n in [0..100]]; // Wesley Ivan Hurt, Jun 16 2014
-
Maple
seq(modp(2*n,3), n=0..90); # Zerinvary Lajos, Dec 01 2006
-
Mathematica
Table[Mod[-n, 3], {n, 0, 100}] (* Wesley Ivan Hurt, Jun 16 2014 *)
-
PARI
a(n)=2*n%3 \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = ceiling(((n mod 3) + 1)/2) + (-1)^((n mod 3) + 1).
G.f.: x*(x+2)/(1-x^3). - Paul Barry, May 25 2003
a(n) = (3 - (n mod 3)) mod 3. - Reinhard Zumkeller, Jul 30 2005
a(n) = 2 * A001045(L(n/3)), where L(j/p) is the Legendre symbol of j and p.
a(n) = (-n) mod 3; also a(n) = 3*ceiling(n/3)-n. - Hieronymus Fischer, May 29 2007
a(n) = (2n) mod 3. - Wesley Ivan Hurt, Jun 23 2013
From Wesley Ivan Hurt, Jul 02 2016: (Start)
a(n) = a(n-3) for n>2.
a(n) = 2*sin(n*Pi/3)*(3*sin(n*Pi/3) + sqrt(3)*cos(n*Pi/3))/3. (End)
Extensions
More terms from Reinhard Zumkeller, Jul 30 2005
New name from Joerg Arndt, Apr 21 2014
Comments