cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080425 Period 3: repeat [0, 2, 1].

Original entry on oeis.org

0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1
Offset: 0

Views

Author

Paul Barry, Feb 20 2003

Keywords

Comments

Previous name was: Jacobsthal selector sequence.
The Jacobsthal sequence A001045 can be defined by A001045(n) = Sum_{k=0..floor(n,3)} C(n, a(n-1)+3*k).
The floor of the area under the polygon connecting the lattice points: (n, a(n)) from 0..n is A001477(n), the nonnegative integers. - Wesley Ivan Hurt, Jun 16 2014

Crossrefs

Programs

Formula

a(n) = ceiling(((n mod 3) + 1)/2) + (-1)^((n mod 3) + 1).
G.f.: x*(x+2)/(1-x^3). - Paul Barry, May 25 2003
a(n) = (3 - (n mod 3)) mod 3. - Reinhard Zumkeller, Jul 30 2005
a(n) = 2 * A001045(L(n/3)), where L(j/p) is the Legendre symbol of j and p.
a(n) = (-n) mod 3; also a(n) = 3*ceiling(n/3)-n. - Hieronymus Fischer, May 29 2007
a(n) = A130196(n) + A131534(n) - 2. - Reinhard Zumkeller, Nov 12 2009
a(n) = (2n) mod 3. - Wesley Ivan Hurt, Jun 23 2013
From Wesley Ivan Hurt, Jul 02 2016: (Start)
a(n) = a(n-3) for n>2.
a(n) = 2*sin(n*Pi/3)*(3*sin(n*Pi/3) + sqrt(3)*cos(n*Pi/3))/3. (End)

Extensions

More terms from Reinhard Zumkeller, Jul 30 2005
New name from Joerg Arndt, Apr 21 2014