A080478 a(n) = smallest k>a(n-1) such that k^2+a(n-1)^2 is prime, starting with a(1)=1. Square roots of A062067(n).
1, 2, 3, 8, 13, 20, 23, 30, 31, 44, 49, 74, 79, 80, 89, 96, 101, 104, 105, 116, 119, 124, 131, 134, 139, 140, 149, 150, 157, 158, 165, 172, 173, 178, 183, 202, 203, 230, 231, 250, 257, 260, 261, 274, 289, 290, 291, 296, 311, 334, 335, 342, 343, 360, 367, 372
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (first 2000 terms from Zak Seidov).
Programs
-
Haskell
a080478 n = a080478_list !! (n-1) a080478_list = 1 : f 1 [2..] where f x (y:ys) | a010051 (x*x + y*y) == 1 = y : (f y ys) | otherwise = f x ys -- Reinhard Zumkeller, Apr 28 2011
-
Maple
A[1]:= 1: for n from 2 to 100 do for k from A[n-1]+1 while not isprime(k^2+A[n-1]^2) do od: A[n]:= k od: seq(A[n],n=1..100); # Robert Israel, Sep 01 2014
-
Mathematica
nxt[n_]:=Module[{n2=n^2,k=n+1},While[!PrimeQ[k^2+n2],k++];k]; NestList[nxt,1,60] (* Harvey P. Dale, Jun 24 2012 *) a=1;sq={1}; Do[a2=a^2;b=a+1;While[!PrimeQ[a2+b^2],b=b+2]; AppendTo[sq,b]; a=b,{100}];sq (* Zak Seidov, Feb 21 2014 *)
-
PARI
p=1;print1(p",");for(n=2,1000, if(isprime(p+n^2),print1(n",");p=n^2))
-
Python
from sympy import isprime A080478, a = [1], 1 for _ in range(1,10000): a += 1 b = 2*a*(a-1) + 1 while not isprime(b): b += 4*(a+1) a += 2 A080478.append(a) # Chai Wah Wu, Sep 01 2014
Extensions
PARI program corrected by Zak Seidov, Apr 14 2008