A289807
p-INVERT of (1,2,2,3,3,4,4,...) (A080513), where p(S) = 1 - S - S^2.
Original entry on oeis.org
1, 4, 13, 42, 133, 424, 1348, 4291, 13653, 43449, 138261, 439979, 1400101, 4455420, 14178073, 45117606, 143573662, 456881476, 1453892534, 4626590576, 14722780217, 46850970327, 149089600359, 474434334814, 1509749422360, 4804338875098, 15288412556740
Offset: 0
-
z = 60; s = x (1 + x - x^2)/((1 - x)^2*(1 + x)); p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A080513 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289807 *)
LinearRecurrence[{3,2,-5,1,2,-1},{1,4,13,42,133,424},30] (* Harvey P. Dale, Aug 20 2024 *)
A289780
p-INVERT of the positive integers (A000027), where p(S) = 1 - S - S^2.
Original entry on oeis.org
1, 4, 14, 47, 156, 517, 1714, 5684, 18851, 62520, 207349, 687676, 2280686, 7563923, 25085844, 83197513, 275925586, 915110636, 3034975799, 10065534960, 33382471801, 110713382644, 367182309614, 1217764693607, 4038731742156, 13394504020957, 44423039068114
Offset: 0
Example 1: s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S.
S(x) = x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - (x + 2x^2 + 3x^3 + 4x^4 + ... )
- p(0) + 1/p(S(x)) = -1 + 1 + x + 3x^2 + 8x^3 + 21x^4 + ...
T(x) = 1 + 3x + 8x^2 + 21x^3 + ...
t(s) = (1,3,8,21,...) = A001906.
***
Example 2: s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S - S^2.
S(x) = x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - ( x + 2x^2 + 3x^3 + 4x^4 + ...) - ( x + 2x^2 + 3x^3 + 4x^4 + ...)^2
- p(0) + 1/p(S(x)) = -1 + 1 + x + 4x^2 + 14x^3 + 47x^4 + ...
T(x) = 1 + 4x + 14x^2 + 47x^3 + ...
t(s) = (1,4,14,47,...) = A289780.
-
P:=[1,4,14,47];; for n in [5..10^2] do P[n]:=5*P[n-1]-7*P[n-2]+5*P[n-3]-P[n-4]; od; P; # Muniru A Asiru, Sep 03 2017
-
z = 60; s = x/(1 - x)^2; p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289780 *)
-
x='x+O('x^99); Vec((1-x+x^2)/(1-5*x+7*x^2-5*x^3+x^4)) \\ Altug Alkan, Aug 13 2017
A341148
Triangle read by rows: T(n,k) is number of cubes in the k-th vertical slice of the polycube called "tower" described in A221529 where n is the longest side of its base, 1 <= k <= n.
Original entry on oeis.org
1, 2, 2, 4, 3, 2, 7, 6, 4, 3, 12, 10, 7, 3, 3, 19, 17, 12, 9, 5, 4, 30, 26, 20, 13, 8, 4, 4, 45, 41, 31, 23, 16, 10, 5, 5, 67, 60, 48, 34, 25, 15, 11, 5, 5, 97, 89, 71, 55, 39, 28, 17, 12, 6, 6, 139, 127, 104, 78, 60, 40, 28, 17, 11, 6, 6, 195, 181, 149, 118, 89, 65, 45, 32, 21, 15, 7, 7
Offset: 1
Triangle begins:
1;
2, 2;
4, 3, 2;
7, 6, 4, 3;
12, 10, 7, 3, 3;
19, 17, 12, 9, 5, 4;
30, 26, 20, 13, 8, 4, 4;
45, 41, 31, 23, 16, 10, 5, 5;
67, 60, 48, 34, 25, 15, 11, 5, 5;
97, 89, 71, 55, 39, 28, 17, 12, 6, 6;
139, 127, 104, 78, 60, 40, 28, 17, 11, 6, 6;
195, 181, 149, 118, 89, 65, 45, 32, 21, 15, 7, 7;
...
Illustration of initial terms:
Top view
n k of the tower Heights T(n,k)
_
1 1 |_| 1 1
. _ _
2 1 | | 1 1 2
2 2 |_ _| 1 1 2
. _ _ _
3 1 |_| | 2 1 1 4
3 2 | _| 1 1 1 3
3 3 |_ _| 1 1 2
. _ _ _ _
4 1 |_| | | 3 2 1 1 7
4 2 |_ _| | 2 2 1 1 6
4 3 | _| 1 1 1 1 4
4 4 |_ _ _| 1 1 1 3
. _ _ _ _ _
5 1 |_| | | | 5 3 2 1 1 12
5 2 |_ _|_| | 3 3 2 1 1 10
5 3 |_ _| _ _| 2 2 1 1 1 7
5 4 | | 1 1 1 3
5 5 |_ _ _| 1 1 1 3
. _ _ _ _ _ _
6 1 |_| | | | | 7 5 3 2 1 1 19
6 2 |_ _|_| | | 5 5 3 2 1 1 17
6 3 |_ _| _| | 3 3 2 2 1 1 12
6 4 |_ _ _| _| 2 2 2 1 1 1 9
6 5 | _| 1 1 1 1 1 5
6 6 |_ _ _ _| 1 1 1 1 4
.
The levels of the terraces of the tower are the partition numbers A000041 starting from the base.
Note that the top view of the tower is essentially the same as the top view of the stepped pyramid described in A245092 except that in the tower both the symmetric representation of sigma(n) and the symmetric representation of sigma(n-1) are unified in the level 1 of the structure because the first two partitions numbers A000041 are [1, 1].
Cf.
A000041,
A024916,
A236104,
A237270,
A237271,
A237593,
A221529,
A245092,
A262626,
A336811,
A336812,
A338156,
A340035.
Showing 1-3 of 3 results.
Comments