cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A094025 Expansion of (1+3x)/((1-x^2)(1-3x^2)).

Original entry on oeis.org

1, 3, 4, 12, 13, 39, 40, 120, 121, 363, 364, 1092, 1093, 3279, 3280, 9840, 9841, 29523, 29524, 88572, 88573, 265719, 265720, 797160, 797161, 2391483, 2391484, 7174452, 7174453, 21523359, 21523360, 64570080, 64570081, 193710243, 193710244
Offset: 0

Views

Author

Paul Barry, Apr 22 2004

Keywords

Comments

Add 1, triple, add 1, triple, ... (of course this is simply a restatement of one of Philippe Deléham's formulas). - Jon Perry, Aug 11 2014

Crossrefs

Formula

a(n)=4a(n-2)-3a(n-4); a(n)=3*3^(n/2)(1/4+sqrt(3)/4+(1/4-sqrt(3)/4)(-1)^n)+(-1)^n/2-1.
a(n) = a(n-1)*3 if n odd; a(n) = a(n-1)+1 if n even. - Philippe Deléham, Apr 22 2013
a(2n) = A003462(n+1); a(2n+1) = A123109(n+1) = A029858(n+1). - Philippe Deléham, Apr 22 2013

A094026 Expansion of x(1+10x)/((1-x^2)(1-10x^2)).

Original entry on oeis.org

0, 1, 10, 11, 110, 111, 1110, 1111, 11110, 11111, 111110, 111111, 1111110, 1111111, 11111110, 11111111, 111111110, 111111111, 1111111110, 1111111111, 11111111110, 11111111111, 111111111110, 111111111111, 1111111111110
Offset: 0

Views

Author

Paul Barry, Apr 22 2004

Keywords

Comments

The expansion of x(1+kx)/((1-x^2)(1-kx^2)) has a(n)=k^((n+1)/2)/(2(sqrt(k)-1))-(-sqrt(k))^(n+1)/(2(sqrt(k)+1))-(-1)^n/2-(k+1)/(2(k-1)).
First 4 positive members are the divisors of 6 (the first perfect number), written in base 2 (see A135652, A135653, A135654, A135655). - Omar E. Pol, May 04 2008

Crossrefs

Programs

  • Magma
    I:=[0,1,10,11]; [n le 4 select I[n] else 11*Self(n-2)-10*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 25 2019
  • Mathematica
    LinearRecurrence[{0, 11, 0, -10}, {0, 1, 10, 11}, 30] (* Vincenzo Librandi, Apr 25 2019 *)
    CoefficientList[Series[x (1+10x)/((1-x^2)(1-10x^2)),{x,0,30}],x] (* Harvey P. Dale, Jul 07 2024 *)

Formula

a(n) = 10^(n/2)(5/9+sqrt(10)/18+(5/9-sqrt(10)/18)(-1)^n)-(-1)^n/2-11/18.

A094027 Expansion of x(1+100x)/((1-x^2)(1-100x^2)).

Original entry on oeis.org

0, 1, 100, 101, 10100, 10101, 1010100, 1010101, 101010100, 101010101, 10101010100, 10101010101, 1010101010100, 1010101010101, 101010101010100, 101010101010101, 10101010101010100, 10101010101010101
Offset: 0

Views

Author

Paul Barry, Apr 22 2004

Keywords

Comments

The expansion of x(1+kx)/((1-x^2)(1-kx^2)) has a(n)=k^((n+1)/2)/(2(sqrt(k)-1))-(-sqrt(k))^(n+1)/(2(sqrt(k)+1))-(-1)^n/2-(k+1)/(2(k-1))

Crossrefs

Cf. A075427, A094025, A080610 (interpreted as binary), A094026.

Formula

a(n)=2^n*5^(n+1)((-1)^n/11+1/9)-(-1)^n/2-101/198
Showing 1-3 of 3 results.