cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A080610 Partial sums of Jacobsthal gap sequence.

Original entry on oeis.org

0, 1, 4, 5, 20, 21, 84, 85, 340, 341, 1364, 1365, 5460, 5461, 21844, 21845, 87380, 87381, 349524, 349525, 1398100, 1398101, 5592404, 5592405, 22369620, 22369621, 89478484, 89478485, 357913940, 357913941, 1431655764, 1431655765, 5726623060
Offset: 0

Views

Author

Paul Barry, Feb 26 2003

Keywords

Crossrefs

Programs

  • Magma
    [2^n+(-2)^n/3-(-1)^n/2-5/6: n in [0..30]]; // Vincenzo Librandi, Aug 05 2013
  • Mathematica
    CoefficientList[Series[x (1 + 4 x) / ((1 - x^2) (1 - 4 x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 05 2013 *)
    LinearRecurrence[{0,5,0,-4},{0,1,4,5},40] (* Harvey P. Dale, Nov 11 2021 *)

Formula

a(2n-1) = A001045(2n) = A002450(n); a(2n) = A001045(2n) - 1 = A002450(n) - 1.
G.f.: x*(1+4*x)/((1-x^2)*(1-4x^2)). - Ralf Stephan, Sep 16 2003
a(n) = 2^n+(-2)^n/3-(-1)^n/2-5/6. - Paul Barry, Apr 22 2004
a(n) = a(n-1)*4 if n even; a(n) = a(n-1)+1 if n odd. - Philippe Deléham, Apr 22 2013

A094026 Expansion of x(1+10x)/((1-x^2)(1-10x^2)).

Original entry on oeis.org

0, 1, 10, 11, 110, 111, 1110, 1111, 11110, 11111, 111110, 111111, 1111110, 1111111, 11111110, 11111111, 111111110, 111111111, 1111111110, 1111111111, 11111111110, 11111111111, 111111111110, 111111111111, 1111111111110
Offset: 0

Views

Author

Paul Barry, Apr 22 2004

Keywords

Comments

The expansion of x(1+kx)/((1-x^2)(1-kx^2)) has a(n)=k^((n+1)/2)/(2(sqrt(k)-1))-(-sqrt(k))^(n+1)/(2(sqrt(k)+1))-(-1)^n/2-(k+1)/(2(k-1)).
First 4 positive members are the divisors of 6 (the first perfect number), written in base 2 (see A135652, A135653, A135654, A135655). - Omar E. Pol, May 04 2008

Crossrefs

Programs

  • Magma
    I:=[0,1,10,11]; [n le 4 select I[n] else 11*Self(n-2)-10*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 25 2019
  • Mathematica
    LinearRecurrence[{0, 11, 0, -10}, {0, 1, 10, 11}, 30] (* Vincenzo Librandi, Apr 25 2019 *)
    CoefficientList[Series[x (1+10x)/((1-x^2)(1-10x^2)),{x,0,30}],x] (* Harvey P. Dale, Jul 07 2024 *)

Formula

a(n) = 10^(n/2)(5/9+sqrt(10)/18+(5/9-sqrt(10)/18)(-1)^n)-(-1)^n/2-11/18.

A094027 Expansion of x(1+100x)/((1-x^2)(1-100x^2)).

Original entry on oeis.org

0, 1, 100, 101, 10100, 10101, 1010100, 1010101, 101010100, 101010101, 10101010100, 10101010101, 1010101010100, 1010101010101, 101010101010100, 101010101010101, 10101010101010100, 10101010101010101
Offset: 0

Views

Author

Paul Barry, Apr 22 2004

Keywords

Comments

The expansion of x(1+kx)/((1-x^2)(1-kx^2)) has a(n)=k^((n+1)/2)/(2(sqrt(k)-1))-(-sqrt(k))^(n+1)/(2(sqrt(k)+1))-(-1)^n/2-(k+1)/(2(k-1))

Crossrefs

Cf. A075427, A094025, A080610 (interpreted as binary), A094026.

Formula

a(n)=2^n*5^(n+1)((-1)^n/11+1/9)-(-1)^n/2-101/198
Showing 1-3 of 3 results.