A080610 Partial sums of Jacobsthal gap sequence.
0, 1, 4, 5, 20, 21, 84, 85, 340, 341, 1364, 1365, 5460, 5461, 21844, 21845, 87380, 87381, 349524, 349525, 1398100, 1398101, 5592404, 5592405, 22369620, 22369621, 89478484, 89478485, 357913940, 357913941, 1431655764, 1431655765, 5726623060
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,5,0,-4).
Programs
-
Magma
[2^n+(-2)^n/3-(-1)^n/2-5/6: n in [0..30]]; // Vincenzo Librandi, Aug 05 2013
-
Mathematica
CoefficientList[Series[x (1 + 4 x) / ((1 - x^2) (1 - 4 x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 05 2013 *) LinearRecurrence[{0,5,0,-4},{0,1,4,5},40] (* Harvey P. Dale, Nov 11 2021 *)
Formula
G.f.: x*(1+4*x)/((1-x^2)*(1-4x^2)). - Ralf Stephan, Sep 16 2003
a(n) = 2^n+(-2)^n/3-(-1)^n/2-5/6. - Paul Barry, Apr 22 2004
a(n) = a(n-1)*4 if n even; a(n) = a(n-1)+1 if n odd. - Philippe Deléham, Apr 22 2013
Comments